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ABSTRACT 

 

Shaped Offset QPSK (SOQPSK), as proposed and analyzed by Terrance Hill, is a family 

of constant envelope waveforms that is non-proprietary and exhibits excellent spectral 

containment and detection efficiency. Results using a conventional coherent OQPSK 

demodulator without any special pulse shaping to recover the SOQPSK signal have been 

previously presented. This paper describes a trellis detector for SOQPSK-A and 

SOQPSK-B that provides superior detection performance, as compared to a traditional 

OQPSK detector, by accounting for the pulse shaping. Analytical error performance 

bounds, implementation of the trellis demodulator, and computer simulation results are 

presented.  
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INTRODUCTION 

 

SOQPSK is a non-proprietary modulation technique that is quickly gaining popularity in 

both terrestrial and space applications. The family of SOQPSK waveforms, as described 

by Hill [1], are constant envelope signals with excellent spectral containment and 

detection efficiency. Furthermore, they can be detected using a standard OQPSK 

receiver. Performance results from Hill [1] and Younes, Brase, Patel, and Wesdock [2] 

indicate that a penalty of 2 dB or more are incurred with SOQPSK-A and SOQPSK-B 

respectively, if a suboptimum OQPSK detector is used. The objective of this paper is to 

investigate the optimum receivers for these waveforms, characterize their performance, 

and provide a framework for designing a high-speed implementation of the processing 

algorithms. This paper is composed of five sections that include a brief review of 

SOQPSK, analysis of the attainable detection performance, implementation, simulation 

results, and the conclusion.  

 



 

 

DESCRIPTION OF SOQPSK 

 

The SOQPSK waveforms described by Hill [1] are constant envelope, continuous phase 

modulations that allow a designer to easily trade-off spectral and power efficiency by 

varying a few simple parameters. The waveforms are completely described by either their 

instantaneous phase or frequency. Figure 1 illustrates a conceptual SOQPSK modulator 

that maps a binary input stream a(i) into ternary-valued (+1, 0, -1) frequency impulses 

α(t), passes them through a shaping filter with response g(t),  and applies the 

instantaneous frequency f(t) or phase φ(t) to an appropriate modulator which produces the 

desired SOQPSK waveform.  
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Figure 1. SOQPSK Modulator 

 

The frequency pulse shapes for SOQPSK are given by g(t) = n(t) * w(t), where 

 

n(t) =
Acos(πρ Bt T)

1− 4(ρ Bt T )
2 *

sin(π Bt T )

(π Bt T )
 , w(t)=

1, for t T <T

1

2
+

1

2
cos

π(t T −T1)

T2

, for T1 < t T <T1 +T2

0, for t T >T1 +T2

 

 
 

 
 

 

 
 

 
 

 

 

Note that the four parameters ρ, B, T1, and T2 serve to completely define the frequency 

pulse shapes for SOQPSK-A and SOQPSK-B, as well as an infinite set of similar, and 

interoperable, waveforms. The specific values for SOQPSK-A and SOQPSK-B are listed 

in Table 1 and the resulting pulse shapes and spectra are plotted in Figures 2 and 3. For 

comparison purposes, the spectrum of the MIL-STD-188-182 SOQPSK, which uses a 

rectangular frequency pulse, is also included. The dramatic reduction in sidelobe energy 

makes SOQPSK-A and SOQPSK-B very attractive for terrestrial, satcom, and space 

applications. Moreover, these waveforms can be recovered with a conventional OQPSK 

demodulator if a moderate penalty in detection efficiency can be tolerated. Simulation 

results from [1] and [2] indicate that SOQPSK-A and –B can be detected with an 

suboptimum detector with a penalty of 2 dB of more as compared to OQPSK.  However, 

the detection performance of SOQPSK can be significantly improved with a trellis 

demodulator using the Viterbi algorithm. The performance and implementation of this 

enhanced detector is the focus of this work. 



 

Modulation Type ρ B T1 T2 

SOQPSK-A 1.0 1.35 1.4 0.6 

SOQPSK-B 0.5 1.45 2.8 1.2 

 

Table 1. SOQPSK-A, -B Parameters 
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DETECTION PERFORMANCE ANALYSIS 

 

In order to determine the performance of the detector, the trellis description of SOQPSK 

will be analyzed. A bound on the probability of error can be calculated by determining 

the probability that the receiver will choose a particular path through the trellis (β) 

instead of the path that was actually transmitted (α). Of particular interest is the pair of 

paths (α, β) that are closest in Euclidean distance and result in one or more bit errors. The 

distance between these two paths is called the ‘minimum distance’ and is denoted by 

d
2

min. As the signal-to-noise ratio (SNR) becomes large, the error contribution caused by 

this ‘minimum distance’ event will dominate the bit error probability. 

 

A trellis representation for the MIL-STD-188-182 version of SOQPSK is illustrated in 

Figure 4 and shows the constellation diagram along with the data and frequency pulses 

that produced the highlighted trajectory. The data to frequency mapping function has 

been described by Simon [3] as 
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Note that α(i) only depends on the data values d(i), d(i-1), and d(i-2). This observation 

will be used later when a trellis notation is adopted for implementation. 
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Figure 4. SOQPSK Trellis for Length T/2 Rectangular Frequency Pulse  

 

The optimum receiver uses a pulse shape gR(t) that matches the transmitted pulse shape 

gT(t). Its performance can be bounded using the Euclidean distance between the paths 

(α, β) that are most likely to be confused at the receiver. Since they both use the same 

pulse shape, the distance only depends on the difference sequence γ which is defined as   

γ = α – β. From [4], it is shown that the minimum distance can be expressed as 
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where s(t,α) is the transmitted signal, NT is the length of the observation, α and β are the 

sequence of frequency impulses that are different in at least the first symbol, φ(t,γ) is the 

transmitted phase and γi = αi – βi. Figure 5 illustrates a typical error event in which the 

receiver mistakenly chooses a path corresponding to β instead of the actual transmitted 

path α. Note that before the paths split the phase difference and the accumulated distance 

is zero and while the paths are different, the non-negative Euclidean distance continues to 

increase. Once the paths remerge, the phase difference returns to zero and the 

accumulated distance will remain constant. Sequences pairs that are likely to have a small 

distance have the property that γ(i) returns to zero (modulo 4) fairly quickly after the 

initial split.  In order to find the difference sequence (γmin) that corresponds to a minimum 

distance event, one needs to first identify the valid difference sequences and compute 

their integrated Euclidean distance.    
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Figure 5. Example of an Error Event 

 

For SOQPSK, the difference sequence (γ) is constrained by the function that maps data to 

frequency pulses. For example, γ (1) cannot  immediately return to zero after the first 

non-zero value γ(0) and also | γ(i) − γ (i-1) | ≤ 2 for all i. A phase difference tree 

representing valid γ that are +1 for the first value is shown in Figure 6. Note that one 

could choose to evaluate the set of γ's that are –1 for the first value, but they are merely 

the mirror images of the positive set and have the same distance values. Therefore, due to 

symmetry, it is only necessary to evaluate a subset of all possible γ's. 
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Figure 6. Phase Difference Tree  

 

In order to identify γmin, a computer program was constructed using a modified version of 

the “Limited Sequential Tree Search” algorithm described in Appendix A of [4]. 

Modifications included changing the computation period from T to T/2, using ternary-

values {-1,0,+1} instead of binary inputs for α and β, and constraining the difference 

sequence based upon the data to frequency impulse mapping function. The distance over 

the interval from iT/2 to (i+1)T/2 is calculated from a finite span of the γ(i)’s, 

accumulated, i is incremented, and the procedure is repeated. Candidates that exceed a 

specified distance can be eliminated, thereby keeping the number of candidates being 

evaluated manageable.  



 

The computer search determined that the γ sequence corresponding to the minimum 

distance error event is γmin = [+1 0 –1] for both SOQPSK variants with minimum 

distances (d
2

min) of 1.5067 and 1.7412 for SOQPSK-A and –B respectively. Since this 

‘minimum distance’ event dominates the probability of error at large SNR, the detector 

performance can be upper bounded by Pe ≤ Q((d
2

minEb/No)
1/2

).  

 

However, a more accurate expression for the bit error probability of SOQPSK can be 

formulated by closely examining the trellis error events. Starting at a point where the 

transmit path and the path selected by the receiver diverge, there are four difference 

sequences of frequency pulses (γ) that are most likely to be taken as the paths remerge. 

Although there are many ways for the pairs to remerge, half of them can use minimum 

distance paths (i.e. γmin = [+1 0 –1] or [-1 0 +1]). The easiest way for the other half of the 

sequence pairs to remerge is by γ = [+1 +2 +1] or [-1 -2 -1] which have Euclidean 

distances of 2.68676 for SOQPSK-A and 2.38027 for SOQPSK-B. All of the above-

mentioned paths only produce one bit error. Therefore, if the input bits are equally likely 

and all error events always remerge over paths that are closest in Euclidean distance, a 

lower bound on the probability of bit error for SOQPSK-A and –B can be expressed as 
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It is interesting to note that the same analysis applies to OQPSK with the exception that 

the distance for all of the γ's equal 2. Setting the distances equal to 2 in the above 

equation yields 0.5Q((2Eb/No)
1/2

) + 0.5Q((2Eb/No)
1/2

) = Q((2Eb/No)
1/2

) which is known to 

be the exact bit error probability for OQPSK. The lower bounds for SOQPSK turn out to 

be extremely tight as will be shown in a later section. 

 

A plot of the error rate performance bounds for SOQPSK-A and -B is shown in Figure 7 

along with results for similar waveforms including OQPSK and the upper bound for 

Feher patented FQPSK which has been shown to have a minimum distance of 1.56 [5]. 

Using the upper bound (Pe ≤ Q((d
2

minEb/No)
1/2

), the asymptotic loss relative to OQPSK is 

0.6 dB for SOQPSK-B, 1.07 dB for FQPSK, and 1.23 dB for SOQPSK-A. The lower 

bounds for SOQPSK-A and –B are within 0.25 dB of the upper bound at a BEP of 10
-6

. 

The asymptotic performance of SOQPSK-B is 0.47 dB better than FQPSK and 0.63 dB 

better than SOQPSK-A. 
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Figure 7. Detection Performance based on Euclidean Distance Bounds 

 

 

TRELLIS DEMODULATOR IMPLEMENTATION 

 

Now that analytical bounds for the error performance have been developed, the next step 

is to address the implementation of the trellis demodulator. Since the Viterbi algorithm 

will be used to recover the data, the implementation complexity will be proportional to 

the number of states which is determined by the length of the receive frequency pulse. In 

order to achieve an efficient, high-speed hardware architecture, it is desirable to process 

the signal at the symbol rate. A suitable state representation is suggested by observing 

that the transmitted signal, over a symbol interval, can be completely described by a finite 

span of frequency pulses and a starting phase angle. Since the frequency pulses and 

starting phase are a function of the source bits, the trellis state can be constructed from a 

fixed span of input bits. As an example, Figure 8 illustrates the notation for a trellis using 

a receive pulse length of LR = 1 for which there are eight states of the form [a(i-1) a(i-2) 

a(i-3)]. The current state combined with the input data for the next symbol [a(i+1) a(i)] 

are sufficient to construct the received signal set required by the demodulator. The trellis 

diagram for SOQPSK with LR = 1 is shown in Figure 9. 
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Figure 8. Illustration of Trellis Notation 
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Figure 9. Trellis Connections for Frequency Pulse Length (LR) = 1 

 

In general, there are 2
(2LR+1)

 trellis states which means that the optimum detector would 

require 512 and 131072 states for SOQPSK-A and –B since they extend over 4 and 8 

symbols respectively. Fortunately, it will be shown that a sub-optimum version of the 

detectors using shortened pulses suffers virtually no penalty in detection efficiency 

relative to the optimum detector. Although simple truncation is not optimum, it is easy to 

see that if the ideal 4-symbol frequency pulse for SOQPSK-A is truncated to 2 symbols 

(with impulses added to account for leftover phase), it still closely matches the transmit 

pulse. Figures 9 and 10 illustrate this fact by plotting frequency pulses and phase trees for 

SOQPSK-A using an ideal pulse (LT=4) and a truncated pulse (LR=2) and Figures 11 and 

12 compare an ideal (LT= 8) pulse with a truncated pulse (LR=2) for SOQPSK-B.  
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Figure 9. Pulses for SOQPSK-A 
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Figure 10. Phase Trees for SOQPSK-A 
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Figure 11. Pulses for SOQPSK-B 
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Figure 12. Phase Trees for SOQPSK-B 



SIMULATION RESULTS 

 

Simulations were performed for SOQPSK-A and –B and the results are presented in 

Figure 13. For comparison purposes, published simulation data for FQPSK-B using its 

optimum Viterbi detector [6] is also included. The simulations are for a frequency pulse 

truncated to one symbol time (8 state trellis) for SOQPSK-A and a two symbol length 

pulse (32 states) for SOQPSK-B. As expected, SOQPSK-B outperformed both optimum 

Viterbi detected FQPSK-B [6] and SOQPSK-A. The simulation results agree extremely 

well with the analytical bounds. The results, relative to OQPSK, are listed in Table 2. 
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Figure 13. Simulated Results for SOQPSK 

 

 

Modulation Type Eb/No for 

10
-5

 BEP (dB) 
Loss Compared to Ideal 

OQPSK at 10
-5

 BEP (dB) 

OQPSK 9.6 0 

SOQPSK-A (LR=1, 8 States) 10.5 0.9 

FQPSK-B (Optimum Viterbi) [6] 10.4 0.8 

SOQPSK-B (LR=2, 32 States) 9.9 0.3 

 

Table 2. Simulation Results 

 

The lower bounds for SOQPSK-A and –B matched the computer simulation results 

extremely well over the entire range of SNR’s tested. This is important since the 

analytical error expression can now be used with confidence for lower error rates than are 

practical to characterize with Monte Carlo simulations. Furthermore, it was seen that 

significant shortening of the transmit frequency pulse was not only feasible, but caused 

no discernable degradation when compared to the lower bound. This translates into a 

significant reduction in receiver complexity, making high-speed implementations 

practical.  



CONCLUSIONS 

 

A trellis detector using the Viterbi algorithm for demodulating SOQPSK-A and –B was 

analyzed, and upper and lower performance bounds were computed. A notation for 

constructing the trellis demodulator was introduced and a scheme for using shortened 

frequency pulse lengths to trade off performance versus hardware complexity was 

proposed. It was found that the sub-optimum, reduced complexity designs performed 

extremely well and are practical for implementation. SOQPSK-B was shown to require 

only 0.3 dB more power than OQPSK to achieve a BEP of 10
-5

 while FQPSK-B and 

SOQPSK-A needed an increase of 0.8 and 0.9 dB, respectively. These results were 

consistent using both analytical data and results from computer simulations.  

 

The lower bounds for SOQPSK-A and –B are very simple expressions that provide 

results virtually identical to those produced through computer simulations. They will 

prove to be an extremely powerful and useful analytical tool for further research into this 

family of waveforms. Although only SOQPSK-A and –B were examined, the analysis 

methods and implementation concepts are applicable to any of Hill’s SOQPSK variants. 

In summary, SOQPSK is family of non-proprietary, constant envelope waveforms that 

have outstanding detection efficiency and spectral containment and are ideally suited for 

a variety of commercial and military applications. 
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