Installation and Operation Manual
3rd Generation Rack-Mount RDMS™ Telemetry Receiver

Quasonix, Inc.
6025 Schumacher Park Dr.
West Chester, OH 45069
25 October 2016

Revision 2.5.8
Table of Contents

1 Introduction ..1

1.1 Description ..1

1.2 Nomenclature ...2

1.2.1 Options ..2

1.2.2 Detailed Option Descriptions ...3

1.2.2.1 SAW Filter Option – 14 ..3

1.2.2.2 Adaptive Equalizer – EQ ..3

1.2.2.3 Viterbi Decoder (for Legacy PSK or PCM/FM Only) – K7 ..3

1.2.3 Band Configurations ...4

1.2.3.1 Additional Band Codes ...5

1.3 Package Contents ...5

2 Specifications ..6

3 Installation Instructions ..8

3.1 Mechanical ..8

3.1.1 1U Rack-Mount ...8

3.1.2 3U Touchscreen ...9

3.2 Thermal ..10

3.3 Electrical ...10

3.3.1 1U Rear Panel Connections ...10

3.3.2 3U Rear Panel Connections ...11

3.3.2.1 1U Digital Output MDM-25 D-Sub Pinout-J9 ...14

3.3.2.2 1U RS-422 Output MDM-25 D-Sub Pinout-J23 ..14

3.3.3 Electrical Signals ..16

3.4 Browser Interface ..16

4 Operating Instructions ..18

4.1 Operational Priority ..18

4.2 Front-Panel Control ...19

4.3 1U Front Panel Control ..19

4.4 3U Front Panel Control ..19

4.5 Waveform Graphics ..20

4.6 Navigation ..21

4.6.1 Selecting a Receiver Channel ..22

4.6.2 Main Menu Settings ..23

4.6.2.1 Frequency ...24

4.6.2.1.1 Playback Demodulator ...25
4.6.2.1 Frequency Diversity (Available with Diversity Combiner) .. 26
4.6.2.2 Mode .. 26
4.6.2.3 Bit Rate ... 26
4.6.2.4 Combiner (Optional) .. 28
4.6.2.5 Data Polarity ... 29
4.6.2.6 Clock Polarity ... 29
4.6.2.7 Equalizer .. 30
4.6.2.8 Data Quality Encapsulation (DQE) ... 30
4.6.2.9 Derandomizer .. 31
4.6.2.10 Modulation Scaling (PCM/FM Mode Only) .. 32
4.6.2.11 Modulation Persistence (PCM/FM Mode Only) .. 33
4.6.2.12 Differential Decoding (SOQPSK Mode Only) ... 34
4.6.2.13 AM Menu .. 42
4.6.2.14 AGC Menu ... 37
4.6.2.15 AM Bandwidth .. 43
4.6.2.16 Options Menu ... 45
4.6.2.17 Advanced Menu .. 47
4.6.2.18 AFC Mode .. 60
4.6.2.19 AFC Mode - Off .. 60
4.7.3.9.2
4.7.3.9.1
4.7.3.7.3
4.7.3.7.2
4.7.3.3.6
4.7.3.3.5
4.7.3.3.4
4.7.3.3.3
4.7.3.3.2
4.7.3.3.1
4.7.3.2.3
4.7.3.2.1
4.7.3.1.1

4.7.3 Configure Screen ...79

4.7.3.1 Combiner (Optional) ..79
4.7.3.1.1 Frequency Diversity (Available with Diversity Combiner) ..79

4.7.3.2 Channel Selection and Basic Settings ..80
4.7.3.2.1 Data and Clock Polarity Settings ...82
4.7.3.2.2 Derandomizer Settings ..82
4.7.3.2.3 Differential Decoding Settings (SOQPSK Only) ...83

4.7.3.3 Configure Advanced Settings ...83
4.7.3.3.1 Measured Bit Rate Setting ...84
4.7.3.3.2 IF Filter ..84
4.7.3.3.3 Output Muting ..84
4.7.3.3.4 Muting Timeout ...84
4.7.3.3.5 AFC Mode ...85
4.7.3.3.6 Time Aligner ..86

4.7.3.4 Diversity Combiner Mode ..87

4.7.3.5 PCM Encoding ..87

4.7.3.6 Advanced PCM/FM Settings ...88
4.7.3.6.1 Modulation Index Scaling Mode ..89
4.7.3.6.2 Modulation Persistence ..89

4.7.3.7 Mod Scale Index ..90
4.7.3.7.1 Video DeEmphasis ...91
4.7.3.7.2 Phase Noise Compensation ...91
4.7.3.7.3 Video Scale ..91

4.7.3.8 System Antenna Control Settings ...92

4.7.3.9 Interfaces Window ..94
4.7.3.9.1 AM Bandwidth ...95
4.7.3.9.2 AM Polarity ..95
4.7.3.9.3 AM Scale ... 95
4.7.3.9.4 AGC Compensate .. 95
4.7.3.10 Zero AGC Button ... 96
4.7.3.10.1 RSSI Display .. 97
4.7.3.11 Reset to Factory Defaults Button .. 98
4.7.3.12 Shutdown Hardware Button .. 98
4.7.4 Presets ... 99
4.7.4.1 Save Presets ... 99
4.7.4.2 Load Presets ... 103
4.7.5 About .. 104
4.7.6 Footer Tool Bar ... 105
4.7.6.1 Help .. 106
4.7.6.2 Page Access .. 106
4.7.6.3 Export .. 108
4.7.6.4 Import ... 108
4.7.6.5 Admin (Quasonix Factory Use Only) ... 109
4.8 Access via Telnet ... 111
4.9 Tier 0 (PCM/FM), Tier I (SOQPSK-TG), and Tier II (MULTI-H CPM) Commands 115
4.9.1 Additional Command Set Details .. 120
4.9.1.1 Antenna Control Unit - ACU .. 120
4.9.1.2 Adaptive Equalizer Control - AEQ .. 122
4.9.1.3 Automatic Frequency Control - AFC ... 124
4.9.1.4 Automatic Gain Control - AGC .. 126
4.9.1.4.1 Automatic Gain Control Bulk Attenuation - AGC BA 127
4.9.1.4.2 Automatic Gain Control Data Settings - AGC DATA 128
4.9.1.4.3 Automatic Gain Control Mode - AGC M .. 128
4.9.1.4.4 Automatic Gain Control Loop Parameter - AGC L ... 129
4.9.1.4.5 Automatic Gain Control Attenuator Look Up Table - AGC LUT 130
4.9.1.4.6 Automatic Gain Control Auto Zero - AGC AZ ... 130
4.9.1.4.7 Automatic Gain Control Zero - AGC Z ... 130
4.9.1.5 High Speed Output Mixer Settings - AHM .. 131
4.9.1.6 High/Low Speed Outputs ... 132
4.9.1.6.1 Analog High Speed Output - AHO .. 133
4.9.1.6.2 Analog Low Speed Output - ALO ... 135
4.9.1.6.3 Digital Data Outputs - DDO .. 137
4.9.1.6.4 Demod Analog High Speed Outputs - DAHO .. 137
4.9.1.6.5 Demod Analog Low Speed Outputs - DALO .. 138
4.9.1.6.6 Datapath Digital High Speed Data Output - DDHO ... 138
4.9.1.6.7 Datapath Digital Low Speed Data Output - DDLO ... 139
4.9.1.6.8 Digital High Speed Input - DHI .. 140
4.9.1.6.9 Digital Low Speed Input - DLI ... 140
4.9.1.7 Low Speed Mixer Control - ALM .. 142
4.9.1.8 Lock Status Command - AL ... 142
4.9.1.9 Bit Rate - BR .. 143
4.9.1.10 Combiner Control - CMB ... 143
4.9.1.11 Clock Polarity - CP ... 145
4.9.1.12 Downconverting Antenna - DA .. 145
4.9.1.13 Differential Decoding - DD .. 146
4.9.1.14 Digital Output Muting - DOM ... 146
4.9.1.15 Data Polarity - DP .. 147
4.9.1.16 Data Quality Encapsulation - DQE ... 147
4.9.1.17 Derandomizer State - DR ... 148
4.9.1.18 Digital Status Output - DSO .. 149
4.9.1.19 Forward Error Correction - FEC .. 150
4.9.1.20 Force Lock Indication - FL .. 150
4.9.1.21 FM Demodulator Settings - FM .. 151
 4.9.1.21.1 FM Video Bandwidth Control - FM B 152
4.9.1.22 Front Panel Display Status - FPD .. 152
4.9.1.23 Frequency - FR ... 153
4.9.1.24 Advanced Help Command - HA ... 153
4.9.1.25 IF Filter Control - IF ... 154
4.9.1.26 Modulation Index - MI ... 155
4.9.1.27 Modulation - MO .. 156
4.9.1.28 Output Clock Measurement - OCM .. 158
4.9.1.29 PCM Decoding - PDC ... 158
4.9.1.30 Receiver Channel Parameters .. 158
 4.9.1.30.1 Parameters Erase - PER .. 159
 4.9.1.30.2 All Parameters Erase - PERA .. 159
 4.9.1.30.3 Parameter Load - PLD ... 159
 4.9.1.30.4 Parameter Reset - PRS ... 159
 4.9.1.30.5 Parameters Save - PSV ... 159
 4.9.1.30.6 Reset to Factory Defaults - RFD ... 159
4.9.1.31 Power Level - PL ... 160
4.9.1.32 Phase Noise Compensation - PNC ... 161
4.9.1.33 Query Temperature - QT ... 162
4.9.1.34 Signal Degradation Information - SDI ... 162
4.9.1.35 Spectrum Inversion - SI ... 164
4.9.1.36 Show Serial Number - SN .. 164
4.9.1.37 Save Parameters - SV ... 164
4.9.1.38 Sync Detect - SYNC ... 165
15.3 Set Up TMoIP IP Address...199
15.4 Browser Interface...199
 15.4.1 TMoIP Monitor/Configure Screen...200
 15.4.2 TMoIP Network Screen..201
 15.4.3 TMoIP Serial I/O Screen ...202
 15.4.4 TMoIP Log Screen ...202
 15.4.5 TMoIP System Screen ...203
 15.4.6 TMoIP About Screen ..203
16 Appendix H – Acronym List..204

List of Figures

Figure 1: Rack-Mount RDMS™ Part Number Construction ...2
Figure 2: Mechanical Drawing – 1U Front View..8
Figure 3: Mechanical Drawing – 1U Top View (Dual-channel Connectors Shown)8
Figure 4: Mechanical Drawing – 3U Front View...9
Figure 5: Mechanical Drawing – 3U Top View (Dual-channel Connectors Shown)9
Figure 6: 1U Rear Panel ...10
Figure 7: Rear Panel ..11
Figure 8: 1U MDM-25 D-Sub Pin Locations for J23 and J9..15
Figure 9: Baseband Signal Timing..16
Figure 10: Front Panel Diagram for Dual-Channel Configuration ...19
Figure 11: Front Panel Keypad ...19
Figure 12: 3U Front Panel Graphics, DQM, Main Menu, and Virtual Keypad20
Figure 13: Example PCM/FM Eye Pattern..20
Figure 14: Example SOQPSK Constellation..20
Figure 15: Waveform Graphics LCD with Locked PCM/FM Signal ..21
Figure 16: Front Panel Navigation Keys ...21
Figure 17: Select Unit Key ..22
Figure 18: Active Main Menu Settings LCD..22
Figure 19: Mode Display with Wait Message..23
Figure 20: Front Panel Keypad ...24
Figure 21: Frequency Key on Front Panel ...24
Figure 22: Main Menu, Frequency Setting...24
Figure 23: Frequency Entry Screen ..25
Figure 24: Example Keypad Combination for Setting Frequency ... 25
Figure 25: Main Menu, Frequency Diversity Setting .. 26
Figure 26: Main Menu, Mode Setting .. 27
Figure 27: Rate Key on Front Panel ... 28
Figure 28: Main Menu, Bit Rate Setting ... 28
Figure 29: Bit Rate Entry Screen .. 28
Figure 30: Example Keypad Combination for Setting Bit Rate ... 29
Figure 31: Main Menu, Combiner Setting ... 29
Figure 32: Main Menu, Data Setting ... 30
Figure 33: Main Menu, Clock Setting .. 30
Figure 34: Main Menu, Equalizer Setting ... 31
Figure 35: DQM Calibration Fixture Process .. 31
Figure 36: DQE Format ... 32
Figure 37: Main Menu, DQ Encapsulation ... 33
Figure 38: Main Menu, Derandomizer Setting ... 33
Figure 39: Main Menu, Modulation Scaling – Tracking .. 34
Figure 40: Red Eye Pattern Display - Tracking ... 34
Figure 41: Main Menu, Modulation Scaling – Hold ... 34
Figure 42: Green Eye Pattern Display - Hold ... 34
Figure 43: Main Menu, Modulation Scaling – Off .. 35
Figure 44: Green Eye Pattern Display - Off .. 35
Figure 45: Main Menu, Modulation Scaling – Acquire ... 36
Figure 46: Yellow Eye Pattern Display - Acquire .. 36
Figure 47: Main Menu, Modulation Persistence – Off ... 36
Figure 48: Main Menu, Modulation Persistence – On .. 37
Figure 49: Main Menu, Differential Decoding ... 37
Figure 50: Main Menu, AGC Menu Selection ... 38
Figure 51: AGC Menu, Polarity Highlighted .. 38
Figure 52: AGC Menu, AGC Scale Selection and Entry Screens ... 39
Figure 53: Time Constant Selection and Time Constant Entry Screens .. 39
Figure 54: AGC Menu, AGC Zero Mode-Hold Highlighted ... 40
Figure 55: Waveform Graphics Before Zero AGC Set ... 40
Figure 56: AGC Menu, Zero AGC Highlighted ... 41
Figure 57: Waveform Graphics After AGC Zero Set .. 41
Figure 58: Main Menu, AM Menu Selection .. 43
Figure 59: AM Menu, AM Bandwidth Highlighted ... 43
Figure 60: AM Bandwidth Entry Screen ... 43
Figure 61: AM Menu, AM Polarity Highlighted ... 44
Figure 62: AM Menu, Scale Highlighted ... 44
Figure 63: AM Scale Entry Screen ... 44
Figure 64: AM Menu, AGC COMP Highlighted ... 45
Figure 65: Main Menu, Options Menu Selection ... 45
Figure 66: Options Menu, Load Presets ... 45
Figure 67: Load Menu, Load Presets ... 46
Figure 68: Save Menu, Save Presets – Slot 1 and Slot 3 Contain Saved Presets ... 46
Figure 69: Options Menu, Factory Default Selection and Reset in Process ... 47
Figure 70: Main Menu, Advanced Menu ... 48
Figure 71: Advanced Menu, Sync Measured Bit Rate Selection ... 48
Figure 72: 70 MHz IF Module in 2” x 3” Chassis ... 49
Figure 73: 70 MHz IF Module in 2” x 3” Chassis SAW Filter Responses, Narrow Group (10 MHz Span) ... 50
Figure 74: SAW Filter Responses, Wide Group (Plotted on 100 MHz Span) ... 51
Figure 75: Optional SAW Filter Responses for 70 kHz to 6 MHz ... 52
Figure 76: Optional SAW Filter Responses for 14 MHz and 28 MHz ... 53
Figure 77: Front Panel Advanced Menu and IF Filter Menu ... 53
Figure 78: Advanced Menu, Video DeEmphasis Selection ... 54
Figure 79: Advanced Menu, Video Scale Selection ... 54
Figure 80: Advanced Menu, Phase Noise Compensation Selection ... 55
Figure 81: Advanced Menu, Muting Timeout Selection ... 55
Figure 82: Muting Timeout Entry Screen ... 56
Figure 83: Advanced Menu, Muting Selection ... 56
Figure 84: Advanced Menu, DC Antenna Selection ... 57
Figure 85: Advanced Menu, Mod Scale Index Selection ... 58
Figure 86: Mod Scale Index Entry ... 58
Figure 87: Advanced Menu, Time Aligner Selection ... 58
Figure 88: Advanced Menu, Combiner Mode Selection ... 59
Figure 89: Main Menu, AFC Mode Selection ... 60
Figure 90: Advanced Menu, AFC Mode – Off ... 61
Figure 91: Main Menu, Modulation Scaling – Acquire ... 61
Figure 92: Advanced Menu, AFC Mode – Track ... 62
Figure 93: Advanced Menu, AFC Mode – Hold ... 62
Figure 94: Advanced Menu, PCM Encoding ... 63
Figure 95: Main Menu, System Settings Selection ... 63
Figure 96: System Settings Menu, System Info Highlighted ... 64
Figure 97: System Settings Menu, System Info Displays ... 64
Figure 98: System Settings Menu, Ethernet Selection ...66
Figure 99: IP Address Selection ..66
Figure 100: IP Address Entry ..66
Figure 101: IP Subnet Selection ..67
Figure 102: IP Subnet Entry ..67
Figure 103: Gateway Selection ..67
Figure 104: Gateway Entry ...67
Figure 105: TMolIP Address ..68
Figure 106: Main Menu, Graphics Menu Selection and Graphics Menu, Graph Type68
Figure 107: PCM/FM Eye Pattern ..69
Figure 108: SOQPSK Constellation ...69
Figure 109: PCM/FM Spectrum Display ...69
Figure 110: SOQPSK Spectrum Display ..69
Figure 111: STC Constellation Display for Channel 1, Combiner, and Channel 270
Figure 112: Labeled STC Constellation Display for Channel 1 ..70
Figure 113: Main Menu, Graphics Menu Selection and Graphics Menu, Signal Strength71
Figure 114: RDMS™ Browser Interface Header Tool Bar ..72
Figure 115: Network Screen with Multiple Receivers and Active Channels73
Figure 116: Network Screen, Closeup of Left Side, Combiners Only73
Figure 117: Network Screen, Closeup of Right Side ..74
Figure 118: RDMS™ Browser Interface Tool Bar ...74
Figure 119: Browser Interface Monitor Screen ...74
Figure 120: Monitor Screen for RDMS™ with Only One Channel Available75
Figure 121: Monitor Screen Partial Status Information Block when Combiner On75
Figure 122: Monitor Screen Partial Status Information Block when Combiner Off76
Figure 123: Signal Graph and Signal Indicators Windows ..76
Figure 124: Signal Graph and Signal Indicators Windows, Zero AGC RSSI Display “Relative” 77
Figure 125: Power Spectral Density Plot Window ...78
Figure 126: Diversity Combiner Link with Locked Signal ..78
Figure 127: RDMS™ Browser Interface Header Tool Bar ..79
Figure 128: Configure Screen, Combiner Section ...79
Figure 129: Configuration Screen with Combiner On, Channel 1 Displays80
Figure 130: Configuration Screen with Combiner Off, Channel 1 and Channel 2 Display80
Figure 131: Configure Basic Settings Window-PCM/FM Mode ..81
Figure 132: Configure Screen, Messages and Alerts ...82
Figure 133: Settings Window, Data Polarity Selection ...82
Figure 134: Settings Window, Derandomizer Check Box ..82
Figure 135: Configure Basic Settings Window-SOQPSK Mode ... 83
Figure 136: Advanced Settings Window ... 83
Figure 137: Advanced Settings Window, IF Filter Menu .. 84
Figure 138: Advanced Settings Window, AFC Mode Menu .. 85
Figure 139: Advanced Settings Window, Time Aligner Selection Checked ... 86
Figure 140: Advanced Settings Window, Diversity Combiner Mode Drop Down Menu 87
Figure 141: Advanced Settings Window, PCM Encoding Drop Down Menu ... 88
Figure 142: Advanced PCMF M Settings Window .. 88
Figure 143: Advanced PCMF M Settings Window, Modulation Index Scaling Mode Menu 89
Figure 144: Advanced PCMF M Settings Window, Modulation Persistence Not Checked 89
Figure 145: Advanced PCMF M Settings Window, Modulation Scale Index Current Value 91
Figure 146: Advanced PCMF M Settings Window, Video DeEmphasis .. 91
Figure 147: System Antenna Control Window ... 92
Figure 148: System Antenna Control Window, AGC Polarity Selection .. 92
Figure 149: System Antenna Control Window, AGC Zero Hold Drop Down Menu 93
Figure 150: System Antenna Control Window, D/C Antenna Selection Checked 94
Figure 151: Interfaces Window ... 95
Figure 152: Interfaces Window, AM Polarity Drop Down Menu Selections ... 95
Figure 153: Advanced Buttons, Zero AGC Button .. 96
Figure 154: Monitor Screen, RSSI Grey - AGC Not Zero .. 97
Figure 155: Monitor Screen, RSSI Not Grey - AGC Zero Value Displayed .. 97
Figure 156: Signal Graph and Signal Indicators Windows, Zero AGC RSSI Display “Relative” 98
Figure 157: Advanced Buttons, Reset to Factory Defaults Button .. 98
Figure 158: Advanced Buttons, Shutdown Hardware Button .. 99
Figure 159: Presets Option on Tool Bar ... 99
Figure 160: Presets Screen .. 99
Figure 161: Presets Screen, Closeup of Left Side .. 100
Figure 162: Presets Screen, Closeup of Right Side .. 100
Figure 163: Preset: View or Modify Preset Screen .. 101
Figure 164: Preset: View or Modify Preset Screen, Preset Name and Description Fields 101
Figure 165: Preset: View or Modify Preset Screen, Information Successfully Saved Message 102
Figure 166: Saved Presets Screen with New Preset Added .. 103
Figure 167: Presets Option on Tool Bar ... 103
Figure 168: Presets Screen .. 104
Figure 169: Loading Preset Please Wait Message on Front Panel .. 104
Figure 170: About Option on Tool Bar ... 104
Figure 171: System Information Screen .. 105
Figure 172: System Information Screen, Rack Alias Field ... 105
Figure 173: Browser Interface Footer Tool Bar .. 105
Figure 174: Help Screen .. 106
Figure 175: Page Access Management Screen .. 107
Figure 176: Page Access Management-Closeup of Left Side .. 107
Figure 177: Page Access Management-Closeup of Right Side .. 107
Figure 178: Page Access Error Message .. 108
Figure 179: Export Configuration Screen ... 108
Figure 180: Import Configuration Screen .. 109
Figure 181: Import Configuration Selection Window .. 109
Figure 182: Quasonix RDMS Administration Window .. 110
Figure 183: Telnet Into Terminal ... 111
Figure 184: Channel Subscribed .. 111
Figure 185: Connected to Channel 2 in PCM/FM Mode ... 112
Figure 186: Channel Subscribed-Method 2 ... 112
Figure 187: RDMSII Telnet Command Menu ... 112
Figure 188: RDMSII Telnet Command Menu-Unsubscribe All Channels ... 113
Figure 189: RDMSII Telnet Command Menu-Subscribe to a Specific Channel 114
Figure 190: BER Performance for Tier 0, I, and II .. 170
Figure 191: Synchronization Time at Various Signal-to-Noise Ratios .. 171
Figure 192: Ideal PCM/FM Phase Tree (h = 0.7) ... 184
Figure 193: Phase Trajectory Never Forgets ... 185
Figure 194: Trellis Detection Gain with Zero to Minimum Phase Noise ... 185
Figure 195: Trellis Detection Gain with Significant to Severe Phase Noise 186
Figure 196: "Clean" Eye Pattern .. 187
Figure 197: Frame Format with SFID Insertion Enabled ... 188
Figure 198: Start Menu - Control Panel ... 194
Figure 199: Region and Language Selection ... 195
Figure 200: Customize Format Window ... 196
Figure 201: 3rd Generation RDMS 3U Back Panel Connectors .. 197
Figure 202: 3rd Generation RDMS 3U Back Panel Connectors-Right Side 198
Figure 203: Browser Window with an Incorrect IP Address .. 199
Figure 204: Receiver Addressing Window ... 199
Figure 205: Browser Interface Header Tool Bar for RDMS™ with TMoIP Option 200
Figure 206: RDMS™ Browser Interface Header Tool Bar, TMoIP Tab 200
Figure 207: TMoIP Monitor/Configure Screen ... 200
Figure 208: TMoIP Monitor/Configure Screen with TMoIP Channel Selected 201
List of Tables

Table 1: Model Configuration Example...2
Table 2: Band Configuration Codes..4
Table 3: Additional 1U Rear Panel Connectors..10
Table 4: Additional 3U Rear Panel Connectors..12
Table 5: 1U and 3U Rear Panel Connector Specifications............................13
Table 6: 1U Digital Output MDM-25 D-Sub Pinout (J9)..................................14
Table 7: 1U RS-422 MDM-25 D-Sub Pinout (J23)...14
Table 8: Modulation Naming Convention...27
Table 9: Standard and Optional User Commands..116
Table 10: RDMS™ BER Specifications..169
Table 11: Band Configuration Codes...172
Table 12: Bit Error Rate Serial Commands..177
Table 13: Test Noise Commands..181
Table 14: Recommended AM/AGC Settings...183
Table 15: PCM/FM Factory Reset Values...190
Table 16: SOQPSK Factory Reset Values..191
Table 17: Multi-h CPM Factory Reset Values..192
Table 18: QPSK Factory Reset Values..193
Table 19: Reference Documents..197
Table 20: 3U Rack-Mount RDMS TMoIP Ports...198
1 Introduction

1.1 Description

This document describes the installation and operation of the Quasonix 3rd Generation Rack-Mount RDMS™ Telemetry Receiver and is updated to match RDMS™ System Version 9. The RDMS™ (Receiver / DeModulator / bit Synchronizer) is designed to downconvert, demodulate, and bit synch to a variety of RF telemetry signals from flight-test aircraft. With an intuitive front-panel interface as well as an extensible web-based browser interface, and antenna-tracking outputs, the Rack-Mount RDMS™ is capable of fulfilling a variety of flight test station requirements.

The following waveform formats are supported by RDMS™:

- PCM/FM (ARTM Tier 0)
- SOQPSK-TG (ARTM Tier I)
- ARTM CPM / Multi-h CPM (ARTM Tier II)
- Legacy (PSK) suite, which includes:
 - BPSK
 - QPSK
 - Offset QPSK (OQPSK)
 - Asymmetric QPSK (AQPSK)
 - Unbalanced QPSK (UQPSK)
 - Asymmetric Unbalanced QPSK (AUQPSK)
- Digital PM
- STC
- SOQPSK/LDPC
- STC/LDPC

Of the aforementioned, RDMS™ provides true multi-symbol trellis demodulation in all three ARTM modes, PCM/FM, SOQPSK-TG, and Multi-h PCM. It also provides a clock signal, obviating the need for any outboard bit synchronizer.

Modes that support LDPC use IRIG-standard low-density parity check coding to dramatically improve link margin by up to 9 dB.

The Rack-Mount RDMS™ Telemetry Receiver is manufactured by:

Quasonix, Inc.
6025 Schumacher Park Drive
West Chester, OH 45069
CAGE code: 3CJA9
1.2 Nomenclature

The Rack-Mount RDMS™ (hereafter referred to as “RM RDMS™”) is available in a plethora of variations based on the number of channels, frequency bands, demodulation methods, options, etc. The features and modes installed in each unit are identified in the model number, as depicted in Figure 1.

This version of the Installation and Operation manual reflects RDMS system version 6.0, FP version 1.0.70. Specifications are subject to change. Contact Quasonix for questions regarding your specific receiver.

1.2.1 Options

The available options are listed below. Refer to section 1.2.2 for detailed descriptions of each option. Please contact Quasonix for assistance ordering receiver options.

- 14 SAW filters (adds 70 kHz, 1.4, 3, 6, 14, and 28 MHz filters)
- EQ Adaptive Equalizer
- K7 K7 Viterbi Decoder (k=7, rate 1/2)

For example, a model QSX-RDMS-3R1D-Q0-1101-00-EQ is configured as shown in Table 1:

<table>
<thead>
<tr>
<th>Identifiers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSX</td>
<td>Quasonix product</td>
</tr>
<tr>
<td>RDMS</td>
<td>Receiver / Demodulator / Bit Synchronizer</td>
</tr>
<tr>
<td>3</td>
<td>2 RF input channels, 3 baseband outputs, with combiner</td>
</tr>
<tr>
<td>R1D</td>
<td>1U Rack Mount</td>
</tr>
<tr>
<td>Q</td>
<td>Lower L, Upper L, S, and C-band operation</td>
</tr>
<tr>
<td>0</td>
<td>No extended tuning</td>
</tr>
</tbody>
</table>
1.2.2 Detailed Option Descriptions

1.2.2.1 SAW Filter Option – 14

This option adds additional SAW filters, for a total of 14. The additional filters are 70 kHz, plus 1.4, 3, 6, 14, and 28 MHz.

1.2.2.2 Adaptive Equalizer – EQ

The Adaptive Equalizer option in the Quasonix receiver improves reception in multipath channels by using digital signal processing to compensate for the signal distortion due to multipath. This option is compatible with standard telemetry applications and installations and it works with any brand of transmitter.

Multipath fading can seriously degrade the quality of wireless telemetry data. Radio transmissions can reflect off of the airframe or other objects and arrive at the receiving antenna with different time delays, carrier phases, and relative strengths. The sum of these multiple transmission paths can produce serious distortion and signal fading resulting in poor data quality and long periods of data outage. Contrary to most situations, increasing the transmit power will not improve the link quality and may actually make the situation worse. Narrowing the beamwidth of the antenna may help eliminate some of the reflections and reduce the overall fading and distortion, but constraints on dish size and antenna tracking performance impose beamwidth limits.

Another solution is to mitigate the effects of the multipath channel by applying a filtering operation at the receiver that effectively undoes the distortion caused by the channel, thereby ‘equalizing’ the received signal. Since the transmitter is typically moving relative to the receiver, the RF propagation environment dynamically changes over time requiring the equalizer to ‘adapt’ to continually combat the perceived channel distortion. The ‘adaptive equalizer’ automatically calculates and applies a compensating filter to the received signal that restores its ability to be recovered by a traditional telemetry detector.

1.2.2.3 Viterbi Decoder (for Legacy PSK or PCM/FM Only) – K7

The K7 option (k=7, rate 1/2) enables Viterbi decoding of a convolutionally encoded data stream, which converts it back to the original (uncoded) source data stream.

Convolutional encoding adds redundant information to the transmitted data stream to help detect and correct bit errors that may occur, particularly due to predominantly Gaussian noise. Use of convolutional encoding requires a matching Viterbi decoder in the receiver to extract the source data. The decoded data rate is half the encoded data rate. The receiver has two independent decoders, one for in-phase (“I”) data and one for quadrature (“Q”) data. For BPSK, only a single decoder is used. Each decoder is compatible with the convolutional encoding described in the “Consultative Committee for Space Data Systems, Recommendation for Space Data System Standards, TM Synchronization and Channel Coding, CCSDS 131.0-B-1, Blue Book, September 2003, Section 3.”
1.2.3 Band Configurations

Band configuration codes are listed in Table 2. Two additional band codes are described in section 1.2.3.1.

Table 2: Band Configuration Codes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>~~~~~~~~~~</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Frequency Gap
- Standard (Base) Frequency Range
- Extended Frequency Range (available by selecting Extended Tuning = 1 in part number)
1.2.3.1 Additional Band Codes

Two additional band codes are available:

- Band Code 7: 70 MHz standard range, 0.075 MHz-20 MHz, 70 MHz extended range
- Band Code T: 2025.0 MHz to 2110.0 MHz standard range

1.3 Package Contents

The contents of the box include the following:

- Rack-Mount receiver unit (1U or 3U)
- Power cord
- Ethernet cable (25 ft)
- Four (4) rubber feet with adhesive for lab bench use

A copy of the Installation and Operation manual is included with the Browser Interface software (Help option).
2 Specifications

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Section</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Dual-conversion superheterodyne</td>
</tr>
<tr>
<td>Input RF Frequency</td>
<td>Refer to section 1.2.3</td>
</tr>
<tr>
<td>Tuning resolution</td>
<td>Tunes in 62.5 kHz increments, to the 70 MHz IF output, after the 70 MHz IF output, receiver tunes in increments of less than 1 Hz</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>1 ppm over temperature; 1 ppm per year aging</td>
</tr>
<tr>
<td>Reference oscillator</td>
<td>20 MHz</td>
</tr>
<tr>
<td>Noise figure</td>
<td>3.5 dB (typical), 5 dB (maximum)</td>
</tr>
<tr>
<td>LO phase noise, measured at 70 MHz IF output</td>
<td>-115 dBc/Hz @ 1 MHz offset</td>
</tr>
<tr>
<td>Maximum RF input</td>
<td>+20 dBm (+10 dBm for C-band)</td>
</tr>
<tr>
<td>Available gain (to 70 MHz IF output)</td>
<td>114 dB</td>
</tr>
<tr>
<td>Gain control</td>
<td>128 dB control range; User selectable: AGC or MGC (AGC freeze)</td>
</tr>
<tr>
<td>AGC time constant</td>
<td>Adjustable to any value from 0.1 ms to 1000 ms</td>
</tr>
<tr>
<td>First IF bandwidth</td>
<td>60 MHz (nominal)</td>
</tr>
<tr>
<td>IF rejection</td>
<td>> 90 dB</td>
</tr>
<tr>
<td>Image rejection</td>
<td>70 dB</td>
</tr>
<tr>
<td>RF input impedance</td>
<td>50 ohms</td>
</tr>
<tr>
<td>VSWR</td>
<td>3:1 Max; 2:1 Typical</td>
</tr>
<tr>
<td>Second IF Section</td>
<td></td>
</tr>
<tr>
<td>IF frequency</td>
<td>70 MHz</td>
</tr>
<tr>
<td>IF output level, nominal (AGC mode)</td>
<td>Channel 1 and 2: 70 and 250 kHz bandwidths: -15 dBm</td>
</tr>
<tr>
<td></td>
<td>0.5 – 4.5 MHz bandwidths: -10 dBm</td>
</tr>
<tr>
<td></td>
<td>6 and 10 MHz bandwidths: -5 dBm</td>
</tr>
<tr>
<td></td>
<td>14 - 40 MHz bandwidths: -15 dBm</td>
</tr>
<tr>
<td></td>
<td>Combiner: -5 dBm</td>
</tr>
<tr>
<td></td>
<td>Channel 1 and 2 Mod Out: -5 dBm (3U RDMS only)</td>
</tr>
<tr>
<td>IF output impedance</td>
<td>50 ohms</td>
</tr>
<tr>
<td>VSWR</td>
<td>2:1 Max; 1.5:1 Typical</td>
</tr>
<tr>
<td>IF bandwidths</td>
<td>250 kHz, 500 kHz, 1 MHz, 2 MHz, 4.5 MHz, 10 MHz, 20 MHz, 40 MHz. Automatic selection based on modulation type and data rate, with manual override. Optional: 70 kHz, 1.4 MHz, 3 MHz, 6 MHz, 14 MHz, 28 MHz</td>
</tr>
<tr>
<td>Playback Demodulator IF In, Channel 1 and 2 Section</td>
<td>Input Center Frequency: 75 kHz – 20 MHz, 70 MHz through any selectable SAW filter</td>
</tr>
<tr>
<td></td>
<td>Input Level: -30 dBm ± 10 dB</td>
</tr>
<tr>
<td></td>
<td>Input Impedance: 50 ohms, nominal</td>
</tr>
</tbody>
</table>
Demodulator Section

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demodulator type</td>
<td>ARTM Tier 0 (PCM/FM), ARTM Tier I (SOQPSK-TG), ARTM Tier II (Multi-h CPM) Legacy suite: Analog FM, BPSK, QPSK, Offset QPSK (OQPSK), Asymmetric QPSK (AQPSK), Unbalanced QPSK (UQPSK), Asymmetric Unbalanced QPSK (AUQPSK), Digital PM, Space Time Coding (STC)</td>
</tr>
<tr>
<td>Bit Rates (after LDPC encoding, if applicable)</td>
<td>Tier 0: 24 kbps to 23 Mbps in 1 bps steps Tier I: 100 kbps to 46 Mbps in 1 bps steps Tier II: 1 Mbps to 46 Mbps in 1 bps steps STC: 5 Mbps to 22 Mbps in 1 bps steps Legacy: 25 kbps to 23 Mbps in Analog FM, 25 kbps to 23 Mbps in BPSK, 50 kbps to 46 Mbps in QPSK in 1 bps steps</td>
</tr>
<tr>
<td>Synchronization time (Average, at BER = 1e-5)</td>
<td>Tier 0: 250 bits, Tier I: 385 bits, Tier II: 2,800 bits</td>
</tr>
<tr>
<td>Synchronization acquisition threshold</td>
<td>Tier 0: -5.0 dB Eb/N0; RF Input (dBm): -115.0 (1 Mbps), -105.0 (10 Mbps) Tier I: -4.0 dB Eb/N0; RF Input (dBm): -114.0 (1 Mbps), -104.0 (10 Mbps) Tier II: -8.0 dB Eb/N0; RF Input (dBm): -118.0 (1 Mbps), -108.0 (10 Mbps)</td>
</tr>
<tr>
<td>Synchronization dropout threshold</td>
<td>Tier 0: -10.0 dB Eb/N0; RF Input (dBm): -120.0 (1 Mbps), -110.0 (10 Mbps) Tier I: -6.0 dB Eb/N0; RF Input (dBm): -116.0 (1 Mbps), -106.0 (10 Mbps) Tier II: -15.0 dB Eb/N0; RF Input (dBm): -125.0 (1 Mbps), -115.0 (10 Mbps)</td>
</tr>
<tr>
<td>Sensitivity (BER = 1e-5)</td>
<td>Tier 0: 8.6 dB Eb/N0; RF Input (dBm): -101.4 (1 Mbps), -91.4 (10 Mbps) Tier I: 11.2 dB Eb/N0; RF Input (dBm): -98.8 (1 Mbps), -88.8 (10 Mbps) Tier II: 13.0 dB Eb/N0; RF Input (dBm): -97.0 (1 Mbps), -87.0 (10 Mbps)</td>
</tr>
</tbody>
</table>

Bit Synchronizer Section

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input codes</td>
<td>NRZ-L/M/S, BiΦ-L/M/S, RZ, DM-M/S, M2-M/S</td>
</tr>
<tr>
<td>Output codes</td>
<td>NRZ-L/M/S, BiΦ-L/M/S, RZ, DM-M/S, M2-M/S</td>
</tr>
<tr>
<td>Data and clock out</td>
<td>TTL (BNC) and RS-422</td>
</tr>
<tr>
<td>Lock detector out</td>
<td>TTL</td>
</tr>
<tr>
<td>Derandomizer</td>
<td>Standard IRIG 15-stage polynomial, selectable On/Off</td>
</tr>
</tbody>
</table>

Video Section

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video out (DC to 35 MHz)</td>
<td>1U—Quad wideband outputs: Ch1 and Ch2; Dual wideband outputs, Combiner 3U—Quad wideband outputs: Ch1, Ch2, and Combiner</td>
</tr>
<tr>
<td>Video filter bandwidth</td>
<td>User programmable</td>
</tr>
<tr>
<td>Output level</td>
<td>1 Vp-p nominal, 4 Vp-p maximum</td>
</tr>
<tr>
<td>NTSC de-emphasis</td>
<td>Selectable On/Off</td>
</tr>
</tbody>
</table>

Environmental Section

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0°C to +50°C</td>
</tr>
<tr>
<td>Non-operating Temperature</td>
<td>-20° C to +70° C</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>0 to 95% (non-condensing)</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 30,000 ft. (with the no displays options)</td>
</tr>
</tbody>
</table>

Physical Section

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>1U rack-mount chassis: 18.95” wide, 1.72” tall, 14.00” rack depth, 14.74” overall depth 3U rack-mount chassis: 18.95” wide, 5.22” tall, 14.06” rack depth, 14.80” overall depth</td>
</tr>
<tr>
<td>Weight</td>
<td>1U: 11.4 lbs. (dual-channel) 3U: 16.0 lbs.</td>
</tr>
<tr>
<td>Power</td>
<td>100 to 240 VAC, 50/60 Hz</td>
</tr>
</tbody>
</table>
3 Installation Instructions

3.1 Mechanical

3.1.1 1U Rack-Mount

The 1U RM RDMS™ Telemetry Receiver’s enclosure fits in a standard 19” rack, occupying just 1U of rack space. Mechanical layouts are provided in Figure 2 and Figure 3.

Figure 2: Mechanical Drawing – 1U Front View

Figure 3: Mechanical Drawing – 1U Top View (Dual-channel Connectors Shown)
3.1.2 3U Touchscreen

The 3U RM RDMS™ Telemetry Receiver’s enclosure fits in a standard 19” rack, occupying 3U of rack space. Mechanical layouts are provided in Figure 4 and Figure 5.
3.2 Thermal

The storage temperature of the RM RDMS™ unit is rated for 0°C to +70°C, while the operating temperature is rated for 0°C to +50°C. It is recommended that the unit be kept in a temperature controlled environment to minimize the risk of operating (or storing) outside the ranges specified. In particular, the four liquid crystal displays on the front panel are extremely sensitive to low temperatures.

The RM RDMS™ features cooling vents on both sides of its aluminum chassis. These vents must be kept entirely unobstructed in order to allow for maximum airflow through the system. Whenever feasible, it is helpful to leave an open rack space above and below the RM RDMS™ for additional heat dissipation.

3.3 Electrical

The RM RDMS™ is available in single- or dual- channel configurations, with all pertinent electrical connections found on the rear panel.

3.3.1 1U Rear Panel Connections

Rear panel connectors are the same for all receivers; however, in a single-channel configuration all connectors are not active.

An optional pre-detection diversity combiner is available in the dual-channel receiver configuration. Connectors for the diversity combiner are present whether the feature is ordered or not. The electrical interface connectors for all configurations are shown in Figure 6.

![Figure 6: 1U Rear Panel](image)

Functional descriptions and electrical characteristics for each clock and data connector for channel 1, channel 2, and combiner located on the rear panel are described in Table 5. The pinout for the 1U J9, an MDM-25 D-sub connector, is shown in Table 6. The pinout for the 1U J23, an MDM-25 D-sub connector, is shown in Table 7.

The ports located on the right side of the back panel are described in Table 3.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (J31)</td>
<td>MDM-25 for Factory Use Only</td>
</tr>
<tr>
<td>HDMI (J33)</td>
<td>Currently Factory Use Only</td>
</tr>
<tr>
<td>USB (J34)</td>
<td>Currently Factory Use Only</td>
</tr>
<tr>
<td>Ethernet (J35)</td>
<td>Enables network access</td>
</tr>
<tr>
<td>Power</td>
<td>Supplies AC power to the unit</td>
</tr>
</tbody>
</table>
3.3.2 3U Rear Panel Connections

Rear panel connectors are the same for all receivers; however, in a single-channel configuration all connectors are not active.

An optional pre-detection diversity combiner is available in the dual-channel receiver configuration. Connectors for the diversity combiner, EVT, and TMoIP are present whether the feature is ordered or not. The electrical interface connectors for all configurations are shown in Figure 7.

![Figure 7: Rear Panel](image)

Functional descriptions and electrical characteristics for each clock and data connector for channel 1, channel 2, and combiner located on the rear panel are described in Table 5.

The ports located on the right side of the back panel are described in Table 4.
Table 4: Additional 3U Rear Panel Connectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Options Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>J71</td>
<td>MDM-25 for Factory Use Only</td>
<td>-</td>
</tr>
<tr>
<td>J73</td>
<td>N-connector Ethernet Via Telemetry Transmitter Output</td>
<td>EVTM</td>
</tr>
<tr>
<td>RDMS HDMI (J74)</td>
<td>Currently Factory Use Only</td>
<td>-</td>
</tr>
<tr>
<td>J75</td>
<td>10 MHz Input</td>
<td>-</td>
</tr>
<tr>
<td>J76</td>
<td>10 MHz Output</td>
<td>-</td>
</tr>
<tr>
<td>J77</td>
<td>IRIG-B Time Input</td>
<td>TMoIP</td>
</tr>
<tr>
<td>J78</td>
<td>IRIG-B Time Output</td>
<td>TMoIP</td>
</tr>
<tr>
<td>RDMS USB (J79)</td>
<td>Currently Factory Use Only</td>
<td>-</td>
</tr>
<tr>
<td>RDMS Control (J80)</td>
<td>RDMS Control or TMoIP Control</td>
<td>-</td>
</tr>
<tr>
<td>EVTM Data (J81)</td>
<td>RJ-45 Ethernet via Telemetry Data</td>
<td>EVTM</td>
</tr>
<tr>
<td>TMOIP (J82)</td>
<td>RJ-45 Telemetry over IP Data Stream Out</td>
<td>TMoIP</td>
</tr>
<tr>
<td>TMOIP USB (J83)</td>
<td>Keyboard/Mouse access for TMoIP</td>
<td>TMoIP</td>
</tr>
<tr>
<td>TMOIP VGA (J84)</td>
<td>SVGA HD-15 NetAcquire Video Out</td>
<td>TMoIP</td>
</tr>
<tr>
<td>Power</td>
<td>Supplies AC power to the unit</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5: 1U and 3U Rear Panel Connector Specifications

<table>
<thead>
<tr>
<th>Channel</th>
<th>1U</th>
<th>3U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Nomenclature</td>
<td>Connector Number/pin</td>
<td>Connector Number/pin</td>
</tr>
<tr>
<td>Clock A</td>
<td>J1</td>
<td>J15</td>
</tr>
<tr>
<td>Data A</td>
<td>J2</td>
<td>J16</td>
</tr>
<tr>
<td>Clock B</td>
<td>J9/14</td>
<td>J9/19</td>
</tr>
<tr>
<td>Data B</td>
<td>J9/15</td>
<td>J9/20</td>
</tr>
<tr>
<td>Clock C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Data C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clock D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Data D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DAC A</td>
<td>J5</td>
<td>J19</td>
</tr>
<tr>
<td>DAC B</td>
<td>J6</td>
<td>J20</td>
</tr>
<tr>
<td>DAC C</td>
<td>J11</td>
<td>J13</td>
</tr>
<tr>
<td>DAC D</td>
<td>J12</td>
<td>J14</td>
</tr>
<tr>
<td>AGC OUT</td>
<td>J3</td>
<td>J17</td>
</tr>
<tr>
<td>AM OUT</td>
<td>J4</td>
<td>J18</td>
</tr>
<tr>
<td>AUX ANALOG A Out</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AUX ANALOG B Out</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IF IN</td>
<td>J7</td>
<td>J21</td>
</tr>
<tr>
<td>IF Out</td>
<td>J8</td>
<td>J22</td>
</tr>
<tr>
<td>70MHz Mod out</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Demod Lock</td>
<td>J9/3</td>
<td>J9/8</td>
</tr>
<tr>
<td>SDI</td>
<td>J9/4</td>
<td>J9/9</td>
</tr>
<tr>
<td>RS422/Clock A_p</td>
<td>J23/1</td>
<td>J23/5</td>
</tr>
<tr>
<td>RS422/Clock A_n</td>
<td>J23/14</td>
<td>J23/18</td>
</tr>
<tr>
<td>RS422/Data A_p</td>
<td>J23/2</td>
<td>J23/6</td>
</tr>
<tr>
<td>RS422/Clock B_p</td>
<td>J23/3</td>
<td>J23/7</td>
</tr>
<tr>
<td>RS422/Clock B_n</td>
<td>J23/16</td>
<td>J23/20</td>
</tr>
<tr>
<td>RS422/Clock C_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RS422/Clock C_n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RS422/Data C_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RS422/Data C_n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RS422/Clock D_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RS422/Clock D_n</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RS422/Data D_p</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RS422/Data D_n</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Color Legend: 75Ω BNC | MDM-25 | 50Ω MMCX | 50Ω BNC | DB-9
3.3.2.1 1U Digital Output MDM-25 D-Sub Pinout-J9

The pinout for the 1U J9, an MDM-25 D-sub connector, is shown in Table 6. Pin locations are illustrated in Figure 8.

Table 6: 1U Digital Output MDM-25 D-Sub Pinout (J9)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Electrical Char.</th>
<th>Pin</th>
<th>Electrical Char.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>14</td>
<td>CH1 CLK B (TTL)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>15</td>
<td>CH1 DATA B (TTL)</td>
</tr>
<tr>
<td>3</td>
<td>CH1 Demod Lock (TTL)</td>
<td>16</td>
<td>CH1 Ones Detect (TTL)</td>
</tr>
<tr>
<td>4</td>
<td>CH1 SDI (RS-423)</td>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>N/C</td>
<td>18</td>
<td>N/C</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>19</td>
<td>CH2 CLK B (TTL)</td>
</tr>
<tr>
<td>7</td>
<td>DND</td>
<td>20</td>
<td>CH2 DATA B (TTL)</td>
</tr>
<tr>
<td>8</td>
<td>CH2 Demod Lock (TTL)</td>
<td>21</td>
<td>CH2 Ones Detect (TTL)</td>
</tr>
<tr>
<td>9</td>
<td>CH2 SDI (RS-423)</td>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>COMB SDI (RS-423)</td>
<td>23</td>
<td>COMB Ones Detect (TTL)</td>
</tr>
<tr>
<td>11</td>
<td>COMB Demod Lock (TTL)</td>
<td>24</td>
<td>COMB Data B (TTL)</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>25</td>
<td>COMB CLK B (TTL)</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.2.2 1U RS-422 Output MDM-25 D-Sub Pinout-J23

The pinout for the 1U J23, an MDM-25 D-sub connector, is shown in Table 7. Pin locations are illustrated in Figure 8.

Table 7: 1U RS-422 MDM-25 D-Sub Pinout (J23)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Electrical Char.</th>
<th>Pin</th>
<th>Electrical Char.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH1 CLK A RS-422_p</td>
<td>14</td>
<td>CH1 CLK A RS-422_n</td>
</tr>
<tr>
<td>2</td>
<td>CH1 DAT A RS-422_p</td>
<td>15</td>
<td>CH1 DAT A RS-422_n</td>
</tr>
<tr>
<td>3</td>
<td>CH1 CLK B RS-422_p</td>
<td>16</td>
<td>CH1 CLK B RS-422_n</td>
</tr>
<tr>
<td>4</td>
<td>CH1 DAT B RS-422_p</td>
<td>17</td>
<td>CH1 DAT B RS-422_n</td>
</tr>
<tr>
<td>5</td>
<td>CH2 CLK A RS-422_p</td>
<td>18</td>
<td>CH2 CLK A RS-422_n</td>
</tr>
<tr>
<td>6</td>
<td>CH2 DAT A RS-422_p</td>
<td>19</td>
<td>CH2 DAT A RS-422_n</td>
</tr>
<tr>
<td>7</td>
<td>CH2 CLK B RS-422_p</td>
<td>20</td>
<td>CH2 CLK B RS-422_n</td>
</tr>
<tr>
<td>8</td>
<td>CH2 DAT B RS-422_p</td>
<td>21</td>
<td>CH2 DAT B RS-422_n</td>
</tr>
<tr>
<td>9</td>
<td>COMB CLK A RS-422_p</td>
<td>22</td>
<td>COMB CLK A RS-422_n</td>
</tr>
<tr>
<td>10</td>
<td>COMB DAT A RS-422_p</td>
<td>23</td>
<td>COMB DAT A RS-422_n</td>
</tr>
<tr>
<td>11</td>
<td>COMB CLK B RS-422_p</td>
<td>24</td>
<td>COMB CLK B RS-422_n</td>
</tr>
<tr>
<td>12</td>
<td>COMB DAT B RS-422_p</td>
<td>25</td>
<td>COMB DAT B RS-422_n</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 8: 1U MDM-25 D-Sub Pin Locations for J23 and J9
3.3.3 Electrical Signals

By default, the output data is valid on the falling edge of the clock, as shown in Figure 9. The polarity of the output clock may be inverted by toggling the Clock Polarity setting in either user interface. The RM RDMS™ can be operated through its front panel interface or web-based browser interface (RDMS™ Browser Interface).

![Baseband Signal Timing - 0 degree clock](image)

Figure 9: Baseband Signal Timing

The RF input to the receiver is a 50 ohm interface.

The RM RDMS™ also provides a 70 MHz IF output for each channel for troubleshooting purposes.

3.4 Browser Interface

The 3rd Generation Rack-Mount RDMS™ Receiver contains a built-in web server. The receiver’s browser-based graphical user interface enables configuration and monitoring of one, or multiple, RDMS™ units on the user’s network. While the Browser Interface works with most modern browsers, the latest version of Firefox or Chrome is recommended. HTML5 compatibility is required. The Browser Interface (BI) provides easy-to-read, real-time status information to the user, thus eliminating the need for direct access to the front panel.

Browser Interface is laid out intuitively with all primary control and monitoring functionality for Channel 1, Channel 2, and diversity combiner in one window.

To access the Browser Interface:

1. Plug a network cable into the RDMS™.
2. Apply power to the RDMS™.
3. Open a browser on the PC.

The rack has an IP address assigned to it when the user sets it up. If it is static, the user must provide an IP address. If it is dynamic, the network assigns an IP address to the RDMS™. The operator needs to know this IP address. The Ethernet screen on the RDMS™ front panel displays the IP address. (Refer to section 4.6.2.20.2 for additional information about the Ethernet screen.)
4. Type the IP address into the browser as:

http://XXX.XXX.XXX.XXX

where the X’s represent the IP address of the rack.

The main Browser Interface web page displays in the browser window and the user has control of the rack.

For issues that occur during installation, call Quasonix Technical Support at 513-942-1287.
4 Operating Instructions

The RM RDMS™ can be operated through its front panel interface or via the web-based browser interface (RDMS™ Browser Interface). The browser interface is capable of configuring, maintaining, and monitoring multiple receivers within a network.

4.1 Operational Priority

With two different user interfaces available—direct front panel operation and remote control—consideration must be given to one or the other to maintain device stability.

- The front panel control takes precedence over the Browser Interface unless the front panel is displaying “Please Wait”.
- Changes saved from the Browser Interface are automatically updated on the front panel.
- Changes made on the front panel are automatically updated on the Browser Interface Monitor window; however, a user accessing the Configure window on the Browser Interface at the same time is notified of changes so unsaved modifications are not overwritten.
- Users may also access the RDMS remotely via Telnet

Telnet provides access to the individual receiver channel’s underlying serial control interface. The serial control interface is not recommended for typical Rack-Mount Receiver usage. The Telnet interface should only be accessed by advanced users. Contact Quasonix customer support before using the Telnet option.

NOTE: Access to this serial control interface is provided primarily for debugging purposes. Unlike the standard front panel and browser interfaces, the serial control interface within the Telnet window is not safeguarded from accidental or improper changes to the receiver’s configuration.

It is strongly recommended that users contact Quasonix Technical Support (Tel: 513-942-1287) prior to using the Terminal serial control interface.

Changes made within the serial command interface of the Terminal window are not automatically filtered into the Configuration window. However, the browser interface is able to detect when serial commands are given, at which time the green Refresh Settings screen button begin to flash in order to prompt the user.

Additional information about the Telnet interface is located in section 4.8.
4.2 Front-Panel Control

4.3 1U Front Panel Control

The 1U Rack-Mount Receiver’s comprehensive front panel interface includes (4) 64k-color liquid crystal displays (LCDs) for displaying receiver status, configuration settings, and waveform graphics; individual function keys for the most common settings; and a complete numeric keypad for convenient parameter entry.

In a single-channel configuration, waveform graphics are displayed on the left-most LCD and receiver settings are on the second LCD from the left. A static Quasonix logo is shown on the two right-most LCDs.

In a dual-channel receiver, the two LCDs located to the right of the power switch are designated for Channel 1, while the other two LCDs are designated for Channel 2.

![Figure 10: Front Panel Diagram for Dual-Channel Configuration](image)

The front panel keypad is shown in Figure 11.

![Figure 11: Front Panel Keypad](image)

4.4 3U Front Panel Control

The 3U front panel control interface is identical to the 1U front panel control interface except that the front panel keypad is implemented as a virtual keypad on the right touchscreen of the 3U, as shown in Figure 12.
4.5 Waveform Graphics

Each channel’s waveform graphics display provides a real-time visual representation of the received signal’s constellation, or eye pattern in the case for PCM/FM.

An example of a PCM/FM eye pattern is shown in Figure 13. An example of an SOQPSK constellation is shown in Figure 14.

In addition to the eye pattern or constellation, the waveform graphics screen displays signal strength and signal quality in vertical bar graph form, a red line AGC Zero On indicator in the Signal Strength bar, and signal lock detect through a padlock icon, as shown in Figure 15.
4.6 Navigation

The Rack-Mount Receiver’s traditional hierarchical menu structure is navigated using the arrow and Enter keys on the front panel keypad, as shown in Figure 16.

![Front Panel Navigation Keys](image-url)
4.6.1 Selecting a Receiver Channel

In a single-channel configuration all front panel keys are active for the receiver. In a dual-channel configuration, Channel 1 will be active upon start-up by default. To toggle control between the channels, press the Select Unit key on the front panel keypad.

The LCD dedicated to receiver settings that is under active control features a white header bar and green text. The channel number displays in the top right hand corner of the screen. In Figure 18, “CH C” designates Combiner.

The Please Wait message, shown in Figure 19, displays whenever the RDMS™ is busy—generally when processing a command for longer than one second. This usually occurs during a Mode change, Ethernet configuration, or due to configuration via the Browser Interface.
4.6.2 Main Menu Settings

The available options from the Main Menu screen include the following:

- Frequency
- Frequency Diversity (Diversity Combiner On)
- Mode
- Bit Rate
- Combiner
- Data Polarity
- Clock Polarity
- Equalizer
- DQ Encapsulation
- Derandomizer
- Modulation Scaling (PCM/FM mode only)
- Modulation Persistence (PCM/FM mode only)
- Differential Decoding (SOQPSK mode only)
- AGC Menu
- AM Menu
- Options Menu
- Advanced Menu
- System Settings
- Graphics Menu

NOTE: Several of the Main Menu settings are also available via direct access function keys located to the left of the numeric keypad. These include Frequency (‘Freq’), Mode, and Bit Rate (‘Rate’). The front panel keypad is shown in Figure 20. Depending on the number of options provided with the RDMS™, some menu items may not display when the RDMS™ is powered on. To see additional LCD menu options, use the arrow keys to scroll up or down. The complete list redisplayed continuously forward or backward, depending on which arrow key is pressed.
To change a setting or access a secondary menu, use the arrow keys to navigate to the parameter. Once highlighted, the Enter key prompts a secondary menu screen or a setting screen, or even change the setting itself if there are only two possible states. To back out of a sub-menu, press the Escape key, ‘Esc’ on the front keypad.

4.6.2.1 Frequency

There are two methods available to the user to set the receiver’s frequency. The first one is to press the Freq key on the front panel keypad. The second method is to highlight the Frequency option on the Main Menu, then press the Enter key on the PC keyboard.

Either method displays a frequency entry screen prompting the operator to type a frequency using the rack’s front panel keypad.
The default frequency is highlighted. The user can use the front panel keypad to:

a. Delete the entire number by pressing the left arrow key
b. Move the cursor to the end of the number by pressing the right arrow key
c. Begin typing the desired frequency, in MHz, using the numeric keypad

For example, to set the frequency of an S-band receiver to 2250.5 MHz, press the following key combination:

```
FREQ 2 2 5 0 . 5 ENTER
```

The available center frequencies are based on the band(s) and any extended options that are ordered, as shown in Table 2.

4.6.2.1.1 Playback Demodulator

The Playback Demodulator function allows the RDMS™ to demodulate signals from a previous mission recorded by an Intermediate Frequency (IF) Recorder. This approach has several possible advantages, including superior trellis demodulation capability relative to other receivers that may have been utilized for the original mission, and the ability to replay the mission multiple times with different settings to obtain the best achievable results.

When the RDMS™ Frequency is set to 75 kHz to 20 MHz, or 70 MHz with a selectable SAW filter (which is well below the standard 200.0 MHz-5250.0 MHz range), the RF downconverter is bypassed and demodulator IF input comes from the IF Input BNC instead. From this input, it is SAW filtered according to the IF Filter setting and demodulated as if it had been received by the RF front end. Accordingly, all demodulator-related settings will affect the performance of the demodulation process.

The normal gain control provided by the RF front end AGC is unavailable when using the receiver as a playback demodulator. Some IF input gain compensation is available, but the input signal must be within the range -30 dBm ± 10 dB to obtain optimal performance.
Mod scaling Acquisition mode (the default) accurately determines the modulation index of a signal in the presence of additive white Gaussian noise (AWGN). While AWGN is always present to some extent when the RF front end is in use, it may not be present when the signal comes directly from the IF input, at least until the playback signal is applied to the demodulator input.

There are a few possible approaches to ensure proper demodulation of PCM/FM signals in playback demodulation:

- If the modulation index is known to be 0.7 (e.g., the recorded source was taken from a digital transmitter), set Mod Scale to Off.
- If there is time for a manual operation after the start of playback, set Mod Scale to Off prior to playback and switch Mod Scale to Acquire after starting playback.
- If the modulation index is not 0.7 and acquisition during playback is not feasible, set Mod Scale to Tracking.

Refer to section 4.6.2.11, for additional information about Modulation Scaling.

4.6.2.2 Frequency Diversity (Available with Diversity Combiner)

The Frequency Diversity option allows the user to independently change the frequency of each channel when the diversity combiner is On.

The FreqDiversity option is toggled On or Off using the Enter key on the front panel keypad.

If there are two channels, the Combiner is set to On, and Frequency Diversity is Off, the channels are updated simultaneously.

![Main Menu, Frequency Diversity Setting](image)

Figure 25: Main Menu, Frequency Diversity Setting

4.6.2.3 Mode

To set the mode, or modulation, press the Mode key on the front panel keypad for a display of the available choices. Use the keypad arrows to navigate to the desired mode, and then press the Enter key.
Due to character limitations in the on-screen menu, some modulation names have been shortened. The following table lists the modes, as they will appear on the screen in the left column, with the generally accepted naming convention in the right column.

<table>
<thead>
<tr>
<th>Screen Name</th>
<th>Actual Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCMFM</td>
<td>PCM/FM</td>
</tr>
<tr>
<td>SOQPSK</td>
<td>SOQPSK-TG</td>
</tr>
<tr>
<td>MhCPM</td>
<td>Multi-h CPM / ARTM CPM</td>
</tr>
<tr>
<td>BPSK</td>
<td>BPSK</td>
</tr>
<tr>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td>AQPSK</td>
<td>AQPSK</td>
</tr>
<tr>
<td>AUQPSK</td>
<td>AUQPSK</td>
</tr>
<tr>
<td>OQPSK</td>
<td>OQPSK</td>
</tr>
<tr>
<td>UQPSK</td>
<td>UQPSK</td>
</tr>
<tr>
<td>DPM</td>
<td>Digital PM</td>
</tr>
<tr>
<td>SOQPSKLDP</td>
<td>SOQPSK with Low Density Parity Check (LDPC) Decoder</td>
</tr>
<tr>
<td>STC</td>
<td>Space Time Coding</td>
</tr>
<tr>
<td>STCLDP</td>
<td>Space Time Coding with Low Density Parity Check</td>
</tr>
</tbody>
</table>

NOTE: Changing modes causes the receiver to reload the FPGA, which takes approximately twelve (12) seconds to complete. A ‘Please Wait’ message displays on the front panel display screen to indicate that the unit is being re-configured. The unit is temporarily unavailable during this time.
4.6.2.4 Bit Rate

There are two methods available to the user to set the receiver’s bit rate. The first one is to press the Rate key on the front panel keypad. The second method is to highlight the Bit Rate option on the Main Menu, then press the Enter key on the PC keyboard.

Either method displays a bit rate dialog screen prompting the operator to enter a bit rate using the rack’s front panel numeric keypad, in Mbps. A decimal point is only needed for bit rates with fidelity down into the kilobits per second range.

For example, to set the bit rate to 10 Mbps, press the following key combination:
If an out-of-range bit rate is entered, the maximum or minimum possible rate will be set by default. For instance, if the user attempts to set the bit rate to 50 Mbps in SOQPSK-TG mode, the receiver will default back to 46 Mbps, the highest possible rate in that particular mode.

4.6.2.5 Combiner (Optional)

A pre-detection diversity combiner is available as an option for dual-channel receivers. If diversity combining is installed on the RDMS™, it can be enabled through the Main Menu > Combiner option.

When the combiner is enabled on one channel, the second channel automatically reflects this change.

Additionally, any parameter changes made by the user in one channel will automatically be made for the second channel, from which the combined signal is partially derived. The only setting that can still be changed individually when the diversity combiner is turned on is the channel frequency, which allows for frequency diversity to be implemented. To illustrate the synchronization of settings, the second channel’s settings menu highlight bar will mimic the navigation path being taken by the user in the first channel.

Note: Whenever the Diversity Combiner is On, any changes made to the Frequency option (even with Frequency Diversity On enabled) causes Modulation Scaling for both channels to be set to the same value. However, if Mod Scaling was set to Locked when the Frequency was changed, Mod Scaling will change to Tracking.

4.6.2.6 Data Polarity

The Data option on the Main Menu is for adjusting the data polarity. The parameter options are Normal and Inverted. To change the polarity, press the Enter key when the parameter is highlighted from the Main Menu. The default is Normal.
4.6.2.7 Clock Polarity

The Clock option on the Main Menu is for adjusting the clock polarity. The parameter options are Normal and Inverted. To change the polarity, press the Enter key on the front panel keypad when the parameter is highlighted on the Main Menu. The default is Normal.

4.6.2.8 Equalizer

The Equalizer option provides improved reception in multipath channels by reducing distortion. By enabling the equalizer, multipath fading is reduced and overall link availability is improved.

The Equalizer option is toggled On or Off using the Enter key on the front panel keypad.
4.6.2.9 Data Quality Encapsulation (DQE)

Data Quality Encapsulation is the process of bundling data quality information along with payload data. This information is intended for use by a Best Source Selector (BSS) to optimally select correct payload data bits from amongst multiple streams of potentially errored payload data. Note that optimal performance can only be achieved if all sources of input to the BSS have independent errors; that is, related sources of data like Channel 1, Channel 2, and Combiner from a single receiver should not be presented to the BSS simultaneously.

Data quality is encoded as a Data Quality Metric (DQM). When calibrated per a standardized procedure, DQM based on bit error probability (BEP) allows DQE from multiple vendors to interoperate.

The Quasonix DQM is based on statistics developed deep inside the demodulator. Bit Error Probability (BEP) is the calculated likelihood that a bit is in error. A very low BEP can be determined from only a few bits. BEP does not require any known data and can be determined quickly and accurately from demodulator statistics. It is an unbiased quality metric, regardless of channel impairments. The DQM is calculated directly from BEP.

The basic DQM calibration fixture is described in the following steps and illustrated in Figure 35.

1. Input corrupted data (with clock)
2. Extract the frame sync word
3. Measure the BER of payload data
4. Compare DQM (converted to BEP) to measured BER and record/store on a packet by packet basis
5. Post process BEP and BER to develop score

![Figure 35: DQM Calibration Fixture Process](image-url)
The DQE format includes a header consisting of the following:

- 16-bit sync pattern (0xFAC4)
 MSB first: 1111101011000100
- 16-bit ID word (format TBD)
- 16-bit DQM = min(round(-log10(LR) / 12 * (2^16)), 2^16 -1)

16-bit unsigned integer, ranges from 0 to 65,535

Likelihood Ratio (LR) = BEP / (1-BEP)

Easily reversed:
LR = 10^(-12 * DQM / 2^16)
BEP = LR / (1 + LR)

Q is defined as the “User’s DQM”:
Q = 12 * DQM / 65536

Represents the exponent of 10 in the LR, which approximates the BEP

Examples:
Q = 3 BEP = 1E-3
Q = 7 BEP = 1E-7

Payload data is a user selectable length with a default of 4096 bits.

With a payload data length of 4096 bits, the network bandwidth expansion is ~1%.

DQM accuracy is verified under various channel impairments including AWGN-static level, AWGN-dynamic level (step response), dropouts, in-band and adjacent channel interference, phase noise, timing jitter, static multipath, and dynamic multipath (similar to break frequency).

To change the DQE, press the Enter key on the front panel keypad when the parameter is highlighted on the Main Menu. The parameter options are Enable or Disable. Toggle between options to select the desired state. The default is Disabled.

Note: When DQE is enabled, normal bit error rate measurements cannot be made on the output data stream.

<table>
<thead>
<tr>
<th>BEP</th>
<th>LR</th>
<th>DQM</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1E-01</td>
<td>1.11111E-01</td>
<td>5211</td>
<td>0.95</td>
</tr>
<tr>
<td>1E-02</td>
<td>1.01010E-02</td>
<td>10899</td>
<td>2.00</td>
</tr>
<tr>
<td>1E-03</td>
<td>1.00100E-03</td>
<td>16382</td>
<td>3.00</td>
</tr>
<tr>
<td>1E-04</td>
<td>1.00010E-04</td>
<td>21845</td>
<td>4.00</td>
</tr>
<tr>
<td>1E-05</td>
<td>1.00001E-05</td>
<td>27307</td>
<td>5.00</td>
</tr>
<tr>
<td>1E-06</td>
<td>1.00000E-06</td>
<td>32768</td>
<td>6.00</td>
</tr>
<tr>
<td>1E-07</td>
<td>1.00000E-07</td>
<td>38229</td>
<td>7.00</td>
</tr>
<tr>
<td>1E-08</td>
<td>1.00000E-08</td>
<td>43691</td>
<td>8.00</td>
</tr>
<tr>
<td>1E-09</td>
<td>1.00000E-09</td>
<td>49152</td>
<td>9.00</td>
</tr>
<tr>
<td>1E-10</td>
<td>1.00000E-10</td>
<td>54613</td>
<td>10.00</td>
</tr>
<tr>
<td>1E-11</td>
<td>1.00000E-11</td>
<td>60075</td>
<td>11.00</td>
</tr>
<tr>
<td>1E-12</td>
<td>1.00000E-12</td>
<td>65535</td>
<td>12.00</td>
</tr>
</tbody>
</table>

Figure 36: DQE Format
4.6.2.10 Derandomizer

The RM RDMSTM includes a derandomizer, which can be enabled (On) or disabled (Off) by selecting the parameter from the Main Menu and pressing the Enter key on the front panel keypad. The default setting for the derandomizer is Off.

4.6.2.11 Modulation Scaling (PCM/FM Mode Only)

Modulation Scaling is a method used to retain the maximum trellis coding gain of a non-ideal FM signal. There are four possible settings: Tracking, Hold, Off, or Acquire.

4.6.2.11.1 Modulation Scaling - Tracking

When the RDMSTM is powered on, the default setting is Acquire, unless the unit was powered off from a preset condition. If the unit was powered off from an unmodified preset setting, then the default condition of Modulation Scaling is as defined in the preset. When Tracking is set, the modulation scale index is actively being tracked.

Note: The active setting is not saved when the rack is powered off, unless the Mod Persist option was set to On.
Frequency, mode, and bit rate changes, or any changes to a preset, cause the Modulation Scaling setting to revert back to Tracking. This is because the optimal signal monitoring is no longer valid.

Note: Whenever the Diversity Combiner is On, any changes made to the Frequency option (even with Frequency Diversity On enabled) causes Modulation Scaling for both channels to be set to Tracking.

![Main Menu, Modulation Scaling – Tracking](image)

The graphing eye pattern is displayed in **RED** when in Tracking mode.

If there are two channels, and the Combiner is set to On, the Modulation Scaling controls for setting the modes are linked. In Acquire or Tracking mode, the actual scaling operation functions independently in each channel.

4.6.2.11.2 Modulation Scaling - Hold

When the RDMS™ has a good lock on the target transmitter, Modulation Scaling should be set to Hold by highlighting the Mod Scaling option on the Main Menu and then pressing the Enter key on the keypad.

When Modulation Scaling is set to Hold, the graphing eye pattern is displayed in **GREEN**, indicating the optimal modulation index is set.
If Modulation Scaling is set to Hold, as shown in Figure 41, the active modulation scale index is also locked in on a particular setting. The modulation scale index number displays next to the Hold setting.

If an index number was entered manually using the Mod Scale Index option (on the Mod Scaling Menu), Modulation Scaling is simultaneously changed to Hold and reflects the Index value set via the Mod Scaling Menu.

Locked index numbers, manually or automatically selected, are lost when the Mod Scaling option is set to Tracking, Off, or Acquire. If the Locked index number is to be retained following a power-off cycle of the rack, then turn on the Mod Persist option via the Main Menu. Refer to section 4.6.2.12, Modulation Persistence.

4.6.2.11.3 Modulation Scaling - Off
The Mod Scaling Off setting is shown in Figure 43. When Modulation Scaling is set to Locked, the graphing eye pattern is displayed in GREEN, indicating the optimal modulation index is set.

![Main Menu](image1)

![Green Eye Pattern Display](image2)

With Mod Scaling turned Off, the Mod Index is set to the optimal 0.700. Mod Scaling should be turned off when a new generation, digitally synthesized transmitter is the source. Digitally synthesized transmitters do not have a variable deviation sensitivity adjustment, and as such are not subject to inaccurate modulation index settings.

4.6.2.11.4 Modulation Scaling - Acquire
When the RDMS™ is powered on, the default setting is Acquire, unless the unit was powered off from a preset condition. Acquire mode has two states: Armed and Triggered. When Modulation Scaling is set to Acquire, in the absence of signal, the eye pattern will turn Yellow, as shown in Figure 46, the state is set to Armed. In Armed state, modulation scaling operates continuously.
If the receiver is locked and the delta h (the change in modulation index) has settled below the delta h threshold for the specified settling time, the state changes to Triggered, and the eye pattern will turn **Green**. In Triggered mode, the estimated h (modulation index) is monitored but the scale is not updated.

If delta h goes above the delta h threshold and settles again, the receiver is still locked, and the Eb/N0 at the settling point is higher than the last settling point, the current scaling is updated with the new estimate. There is no transition from Triggered back to Armed except for setting the mode to Acquire again.

4.6.2.12 Modulation Persistence (PCM/FM Mode Only)

The Mod Persist option allows the current state of the Mod Scaling setting to be retained following a power-off cycle of the rack. The default value is Off, as shown in Figure 47.

To retain a Locked index number, or to remain in Acquire mode, scroll to the Mod Persist option, then toggle the setting to On.
4.6.2.13 Differential Decoding (SOQPSK Mode Only)

In SOQPSK-TG mode, differential encoding and decoding eliminates the phase ambiguity inherent with the received data. The differential decoder can be enabled or disabled through the Main Menu by pressing Enter when the parameter is selected. The Enter key acts as a toggle switch. Normal SOQPSK operation requires the differential decoder to be On. The default value is On.

4.6.2.14 AGC Menu

Access the Automatic Gain Control (AGC) menu from the front panel Main Menu. Select the AGC Menu, and then press the Enter key on the front panel keypad.
The AGC (Automatic Gain Control) menu, shown in Figure 51, includes the following parameters:

- Polarity (Positive/Negative)
- AGC Scale (dB/V)
- Time Constant (in ms)
- AGC Zero Mode
- Zero AGC

4.6.2.14.1 AGC Polarity

The Polarity option is used to toggle the automatic gain control polarity between positive and negative.

The user may toggle the Polarity values by scrolling to the Polarity option and pressing the Enter key on the front panel keypad until the desired value, plus (+) or minus (-) sign, displays.

4.6.2.14.2 AGC Scale

The AGC Scale option, shown in Figure 52, adjusts the voltage of the AGC back panel BNC output. The scale can be set in units of dB/V (decibels per volt). The higher the scale is set, the more dynamic range the AGC output can represent, but the lower its resolution will be.
For example, suppose the AGC zero point is -100 dBm. The AGC output will be 0.0 V when no input signal is applied. When a signal of -80 dBm is received (i.e., 20 dB above the zero point), then the AGC output will be 2.0 V if the scale is set to 10 dB/V and 1.0 V if the scale is set to 20 dB/V. The maximum AGC output voltage is ±5.0 V.

To change the AGC Scale value, select AGC Scale, then press the Enter key on the front panel. An entry screen (Figure 52) prompts the operator to type a new AGC Scale value, in dB/V, using the rack’s front panel numeric keypad. When the new value is entered, press the Enter key on the keypad.

Figure 52: AGC Menu, AGC Scale Selection and Entry Screens

4.6.2.14.3 AGC Time Constant

The Time Constant option, shown in Figure 53, sets the time constant of the AGC back panel BNC output. The time constant can be set in units of ms (milliseconds). The higher the time constant, the slower the AGC output voltage will move in response to changes in input signal level.

Because the AM back panel BNC output tracks any input signal level changes that are not tracked by the AGC, the AM output will include any signal amplitude frequency content from (approximately) the inverse of the AGC time constant up to the AM bandwidth limit. For example, if the AGC time constant is set to 100 ms and the AM bandwidth is set to 100 Hz, then the AM output will include any AM frequencies between roughly 10 Hz and 100 Hz.

To change the Time Constant value, select Time Constant, then press the Enter key on the front panel. An entry screen (Figure 53) prompts the operator to type a new Time Constant, in milliseconds, using the rack’s front panel numeric keypad. When the new value is entered, press the Enter key on the keypad.
Refer to Appendix B for additional details about recommended AGC/AM settings.

4.6.2.14.4 AGC Zero Mode
The AGC Zero Hold (On/Off) option from the 2nd Generation RDMS was replaced by AGC Zero Mode. There are three available settings, Manual, Hold, or Hold and Save.

- Manual - Means the AGC must be zeroed (set) manually after any frequency or IF bandwidth change, or after a power cycle; the IF bandwidth may change if the bit rate changes.
 If AGC was already zeroed and a user scrolls through the AGC Zero Mode options, AGC zero is cleared when Manual is selected.
- Hold - Means the AGC will hold its zero level after any frequency or IF bandwidth change but must be zeroed manually after a power cycle.
- Hold and Save - Means the AGC will hold its zero level after any frequency or IF bandwidth change, or after a power cycle.

The user may scroll through the AGC Zero Mode values by scrolling to the AGC Zero Mode option and pressing the Enter key on the front panel keypad until the desired value displays.

The AGC Zero mode (manual, hold, or hold and save) remains set if a waveform mode changes.
4.6.2.14.5 Zero AGC

Zero AGC is used to set a baseline for background radio noise levels. The front panel displays provide visual indications whether the AGC is zeroed or not. If Zero AGC has not been set, the signal strength bar displays in gray and lacks the blue zero indication line, shown in Figure 55.

![Waveform Graphics Before Zero AGC Set](image)

Figure 55: Waveform Graphics Before Zero AGC Set

A typical application of the Zero AGC function is explained in the following example.

1. Connect the receiver to its normal RF signal source, such as antenna, LNA, cabling, and splitters.
2. Orient the receiving antenna in a direction that is expected to yield the lowest signal level that the receiver is likely to encounter, such as a cold, dark sky.
3. Activate Zero AGC under this condition. (Scroll to Zero AGC, and then press the Enter key on the front panel, as shown in Figure 56.)
4. After the Zero AGC is set, the signal strength bar changes from gray to green (if there is a signal lock), and a blue line indicates the zero value set, as shown in Figure 57. The strength bar changes from gray to red if there is no signal lock.
The AGC output voltage is set to zero volts DC at a time when the receiver input is at its minimum value. This process ensures that the AGC output voltage will not cross through zero volts DC under normal operation.

Note: As mentioned in section 4.6.2.14.4, AGC Zero is cleared if a user scrolls to Manual in the AGC Zero Mode options (Manual, Hold, Hold and Save).

4.6.2.15 AM Menu

Access the Amplitude Modulation (AM) menu from the front panel Main Menu. Select AM Menu, then press the Enter key on the front panel keypad.
The AM (Amplitude Modulation) menu includes the following parameters:

- AM Bandwidth (00)
- AM Polarity (Positive/Negative)
- Scale (0.5-2.5)
- AGC COMP (Enabled / Disabled)

4.6.2.15.1 AM Bandwidth

To change the AM Bandwidth value, select the appropriate option, as shown in Figure 59, then press the Enter key on the front panel.

An entry screen prompts the operator to enter a new AM Bandwidth using the rack’s front panel numeric keypad, as shown in Figure 60. When the new value is entered, press the Enter key on the keypad.

The AM Bandwidth can be set from 5.0 to 50000.0 Hz.

4.6.2.15.2 AM Polarity

The user may toggle the AM Polarity (Figure 61) value by pressing the Enter key on the keypad until the desired value displays. Values are Positive and Negative.
4.6.2.15.3 AM Scale
To change the AM Scale value, select the Scale option on the AM Menu, as shown in Figure 62, then press the Enter key on the front panel.

An entry screen prompts the operator to enter a new AM Scale using the rack’s front panel numeric keypad, as shown in Figure 63. When the new value is entered, press the Enter key on the keypad.

The AM Scale has a range from 0.1 to 2.5. At its default setting of 1, the response is 2V p-p, into a 75 ohm load with a 50% AM.

4.6.2.15.4 AGC Comp
The user may toggle the Automatic Gain Control (AGC) Compensation state by scrolling to the AGC Comp option and pressing the Enter key on the front panel keypad until the desired value displays (Enabled or Disabled). Refer to Appendix B for more information about the AGC Comp function.
4.6.2.16 Options Menu

The Options Menu (Figure 66), which is accessed through the Main Menu (Figure 65), provides the following selections:

- Load Presets Menu
- Save Presets Menu
- Factory Default

4.6.2.16.1 Load Presets Menu

The Load Menu allows previously stored configuration settings from the Save Presets screen, or the system default presets, to be retrieved. (The RDMS ships with predefined presets. Presets are always available even if the user has not created any custom presets. There are no “empty” preset slots.) To load saved presets, select the appropriate option, then press the Enter key on the front panel.

The Load Presets screen, shown in Figure 67, displays eight (8) slots which contain saved preset configurations. The menu displays the file name for the preset next to the load slot. These names can be modified via the Browser Interface. The file name may be truncated on the front panel display since the Browser Interface allows up to 20 characters. Use the Up and Down arrow keys to select a load slot with desired file name displayed. Pressing the Enter key loads the stored preset and configures the receiver accordingly.
4.6.2.16.2 Save Presets Menu

With the 3rd Generation RDMS™ there is no such thing as an empty preset. A brand new RDMS™ contains eight default presets. The Save Presets Menu allows the current settings to be saved for convenient retrieval at a later time, or for quickly switching between configurations. The Save Presets Menu, shown in Figure 68, shares the same set of presets with the Browser Interface.

The Save Presets Menu, shown in Figure 68, illustrates the eight (8) slots for saving presets. Use the Up and Down arrow keys to select a save slot. Press the ‘Enter’ key to save the current configuration in that slot. A wait message displays while the configuration is being saved, then the front panel redisplays the Options Menu.

Quasonix’ new Browser Interface may be used to customize a preset name and description as well as select other preset parameters and advanced settings. Users of previous 2nd Generation RDMS™ receivers will find this additional flexibility an improvement over simply typing a new preset name in a front panel screen. The Browser Interface Saved Presets window, discussed in section 4.7.4, is handy for viewing complete preset descriptions. Since there is no delete presets option, this helps the user to know which presets might be overwritten.

Presets may also be exported and imported from a file saved on a connected computer. Refer to section 4.7.6.3 (Export) or section 4.7.6.4 (Import) for additional information.
4.6.2.16.3 Factory Default

The Factory Default option allows the user to reset each channel of the Rack-Mount Demodulator/Receivers to the factory default settings. Factory Default reset does not affect Ethernet settings or presets.

![Options Menu, Factory Default Selection and Reset in Process](image)

4.6.2.17 Advanced Menu

The Advanced Menu should only be accessed by advanced users. Contact Quasonix customer support before using these options.

The Advanced Menu, which is accessed via the Main Menu, as shown in Figure 70, provides access to the following options:

- Sync Bit Rate
- IF Filter
- Video DeEmphasis (PCM/FM mode only)
- Video Scale
- Phase Noise Comp (PCM/FM mode only)
- Muting Timeout
- Output Muting
- DC Antenna
- Mod Scale Index
- Time Aligner
- Combiner Mode
- AFC Mode
- PCM Encoding
4.6.2.17.1 Synchronize Bit Rate
Synchronize Bit Rate sets the receiver’s commanded bit rate to the value it is currently measuring on the input signal. The purpose of this process is to eliminate unintended bit rate offset error so that the receiver can make full use of its bit synchronizer tracking range, or optionally reduce its tracking range. For the receiver to have an accurate measurement, however, the input signal must be close enough to the previously commanded bit rate to be within the current bit synchronizer lock range and actually be locked.

The Sync Bit Rate option is located on the Advanced Menu, as shown in Figure 71.

To apply the measured bit rate, scroll to the Sync Bit Rate option to highlight it. Then press the Enter key on the front panel keypad. The displayed bit rate value will be set as the new bit rate.

Note, the measured bit rate will be set whether it is accurate or not. For proper operation, ensure that the receiver indicates it is locked (green padlock) prior to using the Sync Bit Rate function.

4.6.2.17.2 IF Filter
The receiver’s integrated IF filter module, shown in Figure 72, includes eight (8) SAW filters, ranging in bandwidth from 250 kHz to 40 MHz in approximately one-octave steps. The standard eight filters are 250 kHz, 500 kHz, 1 MHz, 2 MHz, 5 MHz, 10 MHz, 20 MHz, and 40 MHz. These filters serve as anti-aliasing filters ahead of the A/D converter in the demodulator itself. In addition, they can provide an added measure of adjacent channel interference rejection.
Figure 72: 70 MHz IF Module in 2” x 3” Chassis

The measured responses of the eight filters are shown in Figure 78 and Figure 79 (note the change of horizontal scale between the two figures).

Six additional filters are available allowing for a total of 14. The optional filters are 70 kHz, 1.4 MHz, 3 MHz, 6 MHz, 14 MHz, and 28 MHz. The measured responses of the optional filters are shown in Figure 80 and Figure 81. Contact Quasonix for information about the optional filters.
Figure 73: 70 MHz IF Module in 2" x 3" Chassis SAW Filter Responses, Narrow Group (10 MHz Span)
Figure 74: SAW Filter Responses, Wide Group (Plotted on 100 MHz Span)
Figure 75: Optional SAW Filter Responses for 70 kHz to 6 MHz
Based on the receiver’s high level of integration, the proper IF filter is automatically selected based on the current mode and bit rate settings of the demodulator. Although manual filter selection is available via the IF Filter Menu on the front panel LCD, as shown in Figure 77, manual selection is not recommended. In the case of a receiver with diversity combining enabled, the two channels must have the same IF filter selected for proper operation.

Advanced Menu

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync Bit Rate</td>
<td>1.0000</td>
</tr>
<tr>
<td>IF Filter</td>
<td>2.0 MHz</td>
</tr>
<tr>
<td>Video DeEmphasis</td>
<td>Off</td>
</tr>
<tr>
<td>Video Scale</td>
<td>1.0000</td>
</tr>
<tr>
<td>Phase Noise Comp</td>
<td>Off</td>
</tr>
<tr>
<td>Muting Timeout</td>
<td>1000</td>
</tr>
<tr>
<td>Output Muting</td>
<td>Off</td>
</tr>
<tr>
<td>DC Antenna</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

IF Filter

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic IF Filter</td>
<td>Off</td>
</tr>
<tr>
<td>70 KHz</td>
<td></td>
</tr>
<tr>
<td>250 KHz</td>
<td></td>
</tr>
<tr>
<td>500 KHz</td>
<td></td>
</tr>
<tr>
<td>1.0 MHz</td>
<td></td>
</tr>
<tr>
<td>1.4 MHz</td>
<td></td>
</tr>
<tr>
<td>2.0 MHz</td>
<td></td>
</tr>
<tr>
<td>3.0 MHz</td>
<td></td>
</tr>
<tr>
<td>4.5 MHz</td>
<td></td>
</tr>
</tbody>
</table>

4.6.2.17.3 Video DeEmphasis (PCM/FM Mode Only)

The Video DeEmphasis option, shown in Figure 78, is used to set the Video DeEmphasis value to On or Off. This option should be used when a corresponding video pre-emphasis filter is used on the video transmit side.
The user may toggle the Video DeEmphasis value by pressing the Enter key on the front panel keypad until the desired value displays.

4.6.2.17.4 Video Scale

The Video Scale option sets the peak-to-peak amplitude on the video outputs. By default the video output is 1.0000 V peak-to-peak using a standard deviated NTSC video signal. This setting allows the user to compensate for a system where this is not the case.

The Video Scale option, shown in Figure 79, is used to set the video scale value.

To change the Video Scale setting, select the Video Scale option, then press the Enter key on the front panel. A dialog screen displays prompting the operator to enter a new video scale setting using the rack’s front panel numeric keypad. When the new value is entered, press the Enter key on the keypad.

4.6.2.17.5 Phase Noise Comp (PCM/FM Mode Only)

The Phase Noise Comp option, shown in Figure 80, is used to set the Phase Noise Compensation value to On or Off.
The user may toggle the Phase Noise Compensation value by pressing the Enter key on the front panel keypad until the desired value displays.

4.6.2.17.6 Muting Timeout

The Muting Timeout option, shown in Figure 81 is used to set a timeout value (in milliseconds). This setting is used to determine when to mute (stop sending data) when the Muting option is set to On.

A dialog screen displays prompting the operator to enter a new Muting Timeout value (in milliseconds) using the rack’s front panel numeric keypad. The valid range is 0 to 46016 milliseconds. The Muting Timeout Entry screen is shown in Figure 82. When the new value is entered, press the Enter key on the keypad.
4.6.2.17.7 Output Muting

The Output Muting option, shown in Figure 83, is used to set the muting value to On or Off. When the Output Muting option is set to On, the receiver stops sending clock and data information when the timeout value is reached. This option is beneficial to someone using a recorder with limited space. For example, if data is not locked to a valid signal or is outside the valid range, the information is muted (stopped) so the recorder is not filled with bad data.

The user may toggle the Muting value On or Off by pressing the Enter key on the front panel keypad until the desired value displays.

4.6.2.17.8 DC Antenna

The DC Antenna option is only available when using the 5-band downconverter AND P and C bands are enabled.

The user may toggle the DC Antenna value On or Off by pressing the Enter key on the front panel keypad until the desired value displays.

- When the downconverting antenna is not available, this command displays only an assumed value.
- The downconverting antenna setting only applies to C band frequencies.
The downconverting antenna has an LO that is used to downconvert C band signals (4400 MHz – 5150 MHz) to a lower frequency range known as P band (400 MHz – 1150 MHz) using an LO frequency of 5550 MHz. This results in two issues that are addressed by the downconverting antenna control.

1. Spectral Inversion

 In a downconverting antenna, the LO is higher than the RF (high side injection) and the lower side band result is selected—the spectrum is inverted. All C to P band downconverting antennas are assumed to produce a spectrally inverted signal. The receiver automatically reinverts the signal before it is demodulated. (This is done in the downconversion to 70 MHz IF.) If an actual P band signal is received, it is NOT spectrally inverted and the automatic reinversion done by the receiver improperly causes the signal to appear inverted to the demodulator.

 The demodulator has a mechanism to invert the spectrum in the digital domain. The downconverting antenna setting determines how the spectral inversion is handled for P band signals.

2. C Band Frequency Specification Ambiguity

 It is common to tune to the C to P band downconverted signal by specifying the C band frequency. In a receiver that also has actual C band receiver capability, an ambiguity develops when a C band frequency is specified since it can be applied to either a C or P band signal. The downconverting antenna setting determines how a specified C band frequency is interpreted in a system where both C and P bands are enabled.

 If a C band frequency is specified and the downconverting antenna is enabled, it is assumed the signal is a C to P downconverted signal. The receiver is tuned to the P band equivalent and the automatic inversion is used. If the downconverting antenna is disabled, the receiver is tuned to the specified C band frequency and spectral inversion is not an issue.

 If a P band frequency is specified, it is assumed there is no downconverting antenna. If there is a downconverting antenna, it is ignored. The receiver is tuned to the actual P band frequency and the automatic spectral inversion is disabled.

4.6.2.17.9 Mod Scale Index

The Mod Scale Index option, shown in Figure 85, allows the operator to manually set the modulation scale index. This enables the receiver to operate at the optimum range of modulation desired by the user.

When modulation scale index is set, the Modulation Scaling option is simultaneously changed to Hold. The Hold notation includes the new index number that the operator has chosen.

If the held index number is to be retained following a power-off cycle of the rack, then turn on Mod Persist from the Main Menu. Refer to section 4.6.2.12, Modulation Persistence.
To change the Modulation Scale Index, select Mod Scale Index, then press the Enter key on the front panel.

A dialog screen displays prompting the operator to enter a new modulation scale index using the rack’s front panel numeric keypad. The valid modulation scale index range is 0.350 to 8.000. The Index Entry screen is shown in Figure 86. When the new value is entered, press the Enter key on the keypad.

![Figure 85: Advanced Menu, Mod Scale Index Selection](image)

![Figure 86: Mod Scale Index Entry](image)

To clear any locked modulation scale index number, go to the Main Menu and toggle the Mod Scaling option back to Tracking. After Mod Scaling is set to Tracking, the modulation index follows the receiver’s present estimate of the mod index.

4.6.2.17.10 Time Aligner

The Time Aligner option is only available with the Combiner option enabled and set to On. The Time Aligner can be disabled or enabled. When disabled, it remains Off and does not affect the combiner.

![Figure 87: Advanced Menu, Time Aligner Selection](image)

Enabling the (combiner) time aligner, as shown in Figure 87, lets it determine when to operate (with no user intervention).
Maximal ratio combining can only achieve optimal performance if the Channel 1 and Channel 2 input signals are accurately phase- and time-aligned. Traditionally, diversity combiners have performed phase alignment only, relying on the telemetry system design to provide adequate time alignment.

However, there are cases in which time alignment cannot be easily guaranteed. Such cases include frequency diversity and spatial diversity, where the propagation of transmit and receive paths for Channel 1 and Channel 2 may be quite different through cables, equipment, and the air. As bit rates continue to increase, fixed latency differences are magnified in relation to the bit period.

The Quasonix RDMS™ Combiner can perform both phase alignment and time alignment of the Channel 1 and Channel 2 signals. The Time Aligner is capable of correcting up to ±1300 nanoseconds of time skew between channels (about a quarter mile of free-space propagation). Similar to phase alignment, time alignment is dynamic, accommodating changes in relative target antenna positions over time.

When enabled, the Time Aligner continuously measures skew between channels but remains in a “monitor” state (with no timing correction) as long as the skew remains below a predefined threshold. When the skew exceeds the threshold, the Time Aligner switches to a “run” state (with full timing correction) as long as the signal quality is sufficient for it to continue to track timing skew.

If the propagation delay between channels is well-controlled and small, the Time Aligner may be disabled to guarantee minimal timing jitter.

4.6.2.17.11 Combiner Mode

The Quasonix RDMS™ Combiner can operate in one of two modes: Maximal Ratio or Best Source.

Maximal Ratio combining provides the best pre-detection combining possible, as long as the Channel 1 and Channel 2 input signals can be phase- and time-aligned by the Combiner. In this mode, the Combiner aligns the signals and, using an accurate measure of signal quality, generates their weighted sum. This sum contains the best of both signals plus uncorrelated noise, resulting in up to 3 dB improvement in effective SNR over each individual channel.

Best Source combining is a suboptimal method of combining, but it works for cases in which the Channel 1 and Channel 2 input signals cannot be phase- and time-aligned by the Combiner. Such cases would be rare, but one possible case might be spatial diversity over larger distances than the Combiner Time Aligner can compensate. In this mode, the Combiner continuously selects the channel with better signal quality, so there is no improvement in performance relative to the current best channel. Because Best Source combining is used when proper alignment of the two signals may not be achievable, the Time Aligner should be disabled when this Combiner Mode is selected.
4.6.2.18 AFC Mode

AFC (Automatic Frequency Control) Mode, shown in Figure 89, compensates for frequency offset in the received signal relative to the expected carrier frequency. Demodulators for all modes in the RDMS™ contain frequency-tracking loops that can accommodate some amount of frequency offset. The amount of offset that can be tolerated depends on the mode and is generally a small percentage of the bit rate. If the input frequency offset is greater than this amount, then AFC is needed to make up the difference. Therefore, AFC is particularly applicable to lower bit rates and may be automatically overridden to Off at higher bit rates, regardless of the user specified AFC mode.

The two main sources of offset are (1) reference oscillator frequency differences between the transmitter and the receiver, and (2) Doppler shift. Reference oscillator differences are constant or very slowly time-varying. Doppler shift, by its nature, tends to be dynamic. The optimal AFC mode depends on the source and magnitude of the frequency offset. There are four possible settings: Off, Acquire, Track, or Hold.

The user may toggle the AFC mode by pressing the Enter key on the front panel keypad until the desired value displays.

![Advanced Menu](image)

Figure 89: Main Menu, AFC Mode Selection

Note that the AFC is automatically overridden (Off) if the demodulator can natively tolerate at least 50 kHz of frequency offset. This prevents the AFC from potentially interfering with frequency tracking if AFC is unlikely to be needed. Override may be disabled, and many other detailed AFC parameters may be controlled, via the command line interface. Refer to section 4.9.1.3 for AFC command details.

4.6.2.18.1 AFC Mode - Off

The AFC Mode Off setting is shown in Figure 90. In this mode, the AFC continuously provides zero compensation. This mode is best suited for small frequency offsets that are within the amount of frequency offset that the demodulator can natively tolerate.
4.6.2.18.2 AFC Mode - Acquire

When the RDMS™ is powered on, the default AFC Mode setting is Acquire, as shown in Figure 91. After tuning the receiver, the AFC attempts to estimate and compensate for the input frequency offset. It holds this compensation unless the frequency offset changes substantially or the signal quality improves so that it can make a better estimate. This mode generally works well with static or slowly changing frequency offsets. It may, under unusual circumstances, select and hold an erroneous frequency offset if the channel is highly impaired by interference or dynamic multipath.

4.6.2.18.3 AFC Mode - Track

When AFC Mode is set to Track, as shown in Figure 92, the AFC continuously attempts to estimate and compensate for the input frequency offset unless the input Eb/N0 falls below a predefined threshold. This mode is best suited for dynamic frequency offsets.
4.6.2.18.4 AFC Mode - Hold

When AFC Mode is set to Hold, as shown in Figure 93, the AFC holds its current compensation. This mode is best suited for static frequency offsets. It may be advantageous relative to the Acquire mode if the channel is initially “known good” but may become impaired during a mission.

4.6.2.19 PCM Encoding

The RDMS receiver always outputs NRZ-L data. The PCM Encoding option allows user input (if different than NRZ-L) to be converted by the receiver from a specific transmitted type to NRZ-L.

The user may toggle the PCM Encoding value by pressing the Enter key on the front panel keypad until the desired value displays.

There are eleven possible settings as described below.

- NRZ-L: Non-return-to-zero, level
- Biphase-S: Biϕ, space
- NRZ-M: Non-return-to-zero, mark
- DM-M: Delay modulation (Miller code), mark
- NRZ-S: Non-return-to-zero, space
- DM-S: Delay modulation (Miller code), space
4.6.2.20 System Settings

Access the System Settings menu from the front panel Main Menu. Select System Settings, then press the Enter key on the front panel keypad.

The System Settings menu includes the following parameters:

- System Info
- Ethernet
4.6.2.20.1 System Info

The System Info screen, shown in Figure 97, is a display only screen. It provides the following information about the RDMS™.

The System Info screens provide all of the pertinent network settings for the rack unit, including: RDMS model number, Serial Number, System Version, the FPGA version number, software version numbers, DHCP status, IP Address, IP Subnet address, MAC address, Alias, and Secure Name.

4.6.2.20.1.1 Model

Model describes the type of Quasonix receiver in use.

4.6.2.20.1.2 Serial Number

Serial number describes the Quasonix manufacturing serial number which identifies this specific RDMS™ receiver.

4.6.2.20.1.3 System Version

System Version describes the firmware version in use in this RDMS™ receiver.

4.6.2.20.1.4 FP Version

FP Version describes the FPGA version loaded in this RDMS™ receiver.
4.6.20.1.5 Ch1, Ch2, ChC Version
The Ch1, Ch2, and ChC Version numbers describe the software versions installed on each individual brick in the RDMS™ receiver.

4.6.20.1.6 DHCP
The DHCP option, when enabled, allows the rack unit to automatically receive an IP address from the local DHCP server. If DHCP is turned off, then the user must choose a valid IP address for the unit.

4.6.20.1.7 IP Address
The IP address for the rack unit will either be assigned to it automatically through the use of DHCP, or it must be entered by the user. When choosing an IP address, it is critical that the address is unique; otherwise the unit will not operate within the network properly. It is strongly recommended that the user contact their network administrator to receive a reserved address for this purpose.

4.6.20.1.8 Subnet
The subnet mask identifies the portion of the IP address used as a host identifier for the subnet in which the Quasonix rack unit participates. It is expressed in a quad-dotted decimal representation, just like the unit’s IP address. The most common subnet mask is 255.255.255.0, which means that the unit’s last 8-bit number (i.e. 0 through 255) uniquely identifies it within its sub-network.

4.6.20.1.9 Gateway
The Gateway address displays the Gateway network IP address.

4.6.20.1.10 MAC
The MAC (Media Access Control) is a hardware address uniquely identifying the RDMS™ receiver on the local communication network.

4.6.20.1.11 Alias
This optional parameter is used to provide an alternative name to a rack in addition to the IP Address. The default alias name is RDMS3. The Alias is set via the Browser Interface. When using the Browser Interface (refer to Section 4.7), the alias can be used to quickly identify a particular rack in the displayed list. Examples of a rack alias might be “RDMSLab1”, “TestLabLevel4”, or “XYZProjectRDMS”.

4.6.20.1.12 System IP
The System IP address for the rack unit is assigned automatically. It will always match the IP Address unless the RDMS is a TMoIP unit. In a TMoIP unit, the System IP is the TMoIP address.

4.6.20.1.13 Secure Name (Currently Unavailable)
RDMS™ racks may be configured two different ways, depending on the preferred structure. A Group Identifier (ID) is used to provide a unique name for each RDMS™. In the first configuration, racks may be named based on department, such as Lab, Development, Production, Demonstration, etc. In the second configuration, racks may be named for independent users, such as Office1, B4Btest, TestX, etc.

4.6.20.2 Ethernet
The Ethernet screen, shown in Figure 98, is used to set the DHCP mode, the IP Address, Subnet, and Gateway address.
4.6.2.20.2.1 DHCP

This is the Dynamic Host Configuration Protocol. On some networks, the DHCP assigns dynamic IP addresses to the devices on the network—in other words, it assigns a new IP address each time the user connects to the network. Some networks manage the DHCP manually.

To change the DHCP setting, press the Enter key on the keypad to toggle between On and Off.

4.6.2.20.2.2 IP Address

The IP Address must be assigned manually when DHCP is not in use on a network.

1. To assign an IP address, use the down arrow on the keypad to highlight the IP Address (Figure 99), then press the Enter key.
2. Type the IP address in the IP Address entry screen (Figure 100), then press the Enter key.
3. To exit without making a change, press the Esc key.

4.6.2.20.2.3 Subnet

The IP Subnet must be assigned manually when DHCP is not in use on a network.

1. To assign an IP subnet, use the down arrow on the keypad to highlight the IP Subnet (Figure 101), then press the Enter key.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Address</td>
<td>192.168.1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subnet</td>
<td>255.255.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td>192.168.0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 98: System Settings Menu, Ethernet Selection

Figure 99: IP Address Selection

Figure 100: IP Address Entry

Figure 101: IP Address Entry
2. Type the IP subnet in the IP Subnet entry screen (Figure 102), then press the Enter key.
3. To exit without making a change, press the Esc key.

![Figure 101: IP Subnet Selection](image1.png) ![Figure 102: IP Subnet Entry](image2.png)

4.6.20.2.4 Gateway

The Gateway address is used to set the Gateway network IP address, if required. Contact your network administrator for the correct gateway address.

1. To assign the Gateway IP address, use the down arrow on the keypad to highlight Gateway (Figure 103), then press the Enter key.
2. Type the Gateway address in the Gateway entry screen (Figure 104), then press the Enter key.
3. To exit without making a change, press the Esc key.

![Figure 103: Gateway Selection](image3.png) ![Figure 104: Gateway Entry](image4.png)

4.6.20.2.5 TMoIP Address

In an RDMS TMoIP unit, the TMoIP address displays on the Ethernet screen, as shown in Figure 105. The TMoIP address for the rack unit is assigned automatically.

![Figure 105: Ethernet Screen](image5.png)
4.6.2.21 Graphics Menu

Access the Graphics menu from the front panel Main Menu. Select Graphics Menu, then press the Enter key on the front panel keypad.

The Graphics menu includes the following parameters:

- Graph Type
- Signal Strength

4.6.2.21.1 Graph Type

There are two available graph types on the Graphics Menu, Spectrum or a pattern based on the selected mode. The user may toggle between graph types by pressing the Enter key on the front panel keypad until the desired value displays. Press the Esc key on the front panel keypad to back out of the Graphics Menu.

Examples of the Eye Pattern (PCM/FM) (Figure 107), Constellation (SOQPSK) (Figure 108), Constellation (STC) (Figure 111 and Figure 112), and Spectrum (Figure 109 and Figure 110) are shown in the associated figures.
4.6.2.21.1 STC Constellation

In the Space-Time Coding (STC) mode of operation, the data stream is encoded into two separate signals that each contain a complete copy of the source data. These two signals are transmitted simultaneously on the same RF frequency (usually over two separate antennas) to produce a radiated over-the-air signal that eliminates antenna self-interference, improves message detectability, with a similar bandwidth requirement as a conventional SOQPSK system. The trade-off for these substantial benefits is an increase in receiver processing complexity. Unlike traditional telemetry waveforms that are easy to process by looking at either the frequency or phase representation, STC consists of the sum of two unsynchronized phase modulated signals with seemingly unrelated data that must be recombined to recover the original source data.
Since no traditional constellation exists for this mode, the RDMS displays the relative strength of each signal, the difference in time of arrival between them, and the received strength of the embedded pilot sequences. In a typical application, one of the signals is transmitted out the top antenna of a vehicle while the other signal is transmitted from the bottom. In this setup, the height of the green line above the blue graduated horizontal bar represents the relative strength of the top antenna, while the length of the green line below the bar represents the strength of the bottom. The small green square within the blue bar represents the time difference of arrival in increments of ¼ of a bit period with all the way to the left or right representing a full bit period. The indicators on the right side of the screen, receive signal level (dBm) and DQM, are exactly the same as in the other modes.

While the spectrum display is virtually the same as the SOQPSK spectrum when the RDMS is running in STC mode, the receiver display looks quite different than the usual SOQPSK constellation, as shown in Figure 111. The individual parts of the display are labeled in Figure 112.
4.6.2.21.2 Signal Strength

There are two Signal Strength options, Absolute or Relative. The user may toggle the Signal Strength value by pressing the Enter key on the front panel keypad until the desired value displays.

When Absolute is selected, the actual signal strength is displayed.

When Relative is selected, the signal strength displayed is relative to AGC Zero.

A value of zero on the front panel signal display, indicates no input signal. A value above zero indicates how strong the signal is above no input.

Figure 113: Main Menu, Graphics Menu Selection and Graphics Menu, Signal Strength
4.7 Browser Interface

The Browser Interface provides the user with full configuration, control, and monitoring capabilities for one or multiple rack-mount receivers. For configuration management purposes, only one browser interface can configure a receiver at a given time. However, multiple browser interfaces can monitor an individual receiver’s status at once.

The browser interface’s monitoring capabilities include:

- Receiver settings
- Signal strength
- Signal quality
- Signal lock detect
- Combiner link status (optional Diversity Combiner feature required)
- Constellation / eye pattern display
- Browser Interface status

The RDMS™ Browser Interface consists of a tool bar at the top of the screen, shown in Figure 114, and five selections that display a variety of parameters for each available channel. The Browser Interface defaults to the Network screen.

![Figure 114: RDMS™ Browser Interface Header Tool Bar](image)

4.7.1 Network Screen

The Network screen offers a quick snapshot of each rack-mount receiver, down to the channel level. The screen is comprised of a table with columns for RDMS address, Configuration Name, Channel, Frequency, Mode, Bit Rate, signal strength, signal quality, and lock-detect status (as text and as a red or green color block). The user may access a specific unit by clicking on the Configure or Monitor button for any receiver listed.

The unit to which the user is currently connected is highlighted and defaults to the top of the list.

The Network screen uses a numerical representation for signal strength and signal quality. For a complete explanation, refer to section 4.6.2.9.

Figure 115 shows four RDMS™ receivers. The Lock field is highlighted in green to indicate there is a signal lock. The first receiver is highlighted in blue to indicate it belongs to the user. Note the RDMS Address matches the address on the top browser tab and in the URL box. The additional receivers are on the same network but are in use by other users.

Figure 116 shows a closeup of the right half of the Network screen with combiners only displayed. Figure 117 shows a closeup of the left side of the Network screen with the Configure and Monitor buttons.
Figure 115: Network Screen with Multiple Receivers and Active Channels

Figure 116: Network Screen, Closeup of Left Side, Combiners Only
4.7.2 Monitor Screen

The Monitor screen may be accessed via the Monitor buttons on the Network screen, as described previously, or via the Monitor option on the Tool bar, as shown in Figure 118.

The unit information displays in the Monitor view, as shown in Figure 119.
The Monitor screen provides the user with:

- Channel selection
- Basic receiver settings, such as frequency, mode, bit rate
- Signal indicators, including lock detect, signal strength, signal quality, combiner link status
- Graphical representations of the spectrum

If the user is operating a single-channel receiver, only Channel 1 displays, as shown in Figure 120.

![Figure 120: Monitor Screen for RDMS™ with Only One Channel Available](image120.png)

Additional status information, such as Frequency, Mode, and Bit Rate, is provided at the bottom of the display when the combiner is On, as shown in Figure 121, or displayed in the center of the screen between Channel 1 and Channel 2 when the combiner is Off, as shown in Figure 122.

![Figure 121: Monitor Screen Partial Status Information Block when Combiner On](image121.png)
4.7.2.1 Signal Graph and Signal Indicators

The Signal Graph, shown in Figure 123, provides a separate window for monitoring the receiver’s constellation or eye pattern. The graphical display, included for each channel, mimics the graphical display on the front panel of the rack-mount receiver. Depending on the modulation chosen, the monitor will either display an eye pattern for PCM/FM, or a signal constellation for the other modes.

To the right of the Signal Graph is the Signal Indicators window, also shown in Figure 123.

The Signal Indicators window includes the following indicators for each receiver channel:

- Signal Lock detection
- Signal Strength
- Data Quality Metric (DQM)

A signal lock indicator provides a visual representation of the demodulator’s current lock-detect state. If the demodulator has locked onto a downconverted signal, a locked (closed) padlock displays. Conversely, if the receiver
has not locked onto a signal or has recently lost lock, the indicator turns red and displays as an unlocked padlock icon.

The demodulator measures signal strength in dBm and there is no limit to what the signal strength might be. Signal strength is displayed on a dynamic bar graph and spans from -127 dBm to +50 dBm on the Browser Interface. In addition to the visual representation of signal strength, the current measurement, in dBm, is numerically displayed directly above the bar graph. When a signal of -100 dBm or higher is detected, the bar turns green to signify “good” signal strength. The Strength bar is red if the signal level is below -100 dBm.

The standard signal strength (RSSI) information is set on the Configuration screen via the Advanced > RSSI Display drop down menu (next to the Zero AGC button). Refer to section 4.7.3.10.

If “Absolute” was the RSSI Display selection, the actual signal strength is displayed.

If “Relative” was selected, the RSSI displayed is relative to AGC Zero. The following bullets apply to RSSI Relative:

- a value of zero indicates no input signal
- a value above zero indicates how strong the signal is above no input
- “*** dBm” displayed (Figure 124) indicates AGC is not zeroed and the value is invalid
- small “r” displayed next to the RSSI label indicates AGC Zero Relative was selected

The Data Quality Metric (DQM) graph displays to the right of the Strength graph. The DQM range is 0 to 10, with 10 being the best possible quality.

NOTE: The integrated Quasonix demodulator can detect and establish signal lock at very low signal levels. Therefore, it is not uncommon to see a red signal strength bar indicator accompanied with a green signal lock indicator.

4.7.2.2 Spectrum Graph

Each channel display provides a real-time power spectral density (PSD) plot as it might display on a spectrum analyzer. An example is shown in Figure 125.
4.7.2.3 Diversity Combiner

If the optional diversity combiner is installed and enabled between two channels, then a Signal image and a DQM graph display in the area between the two channels on the Monitor. The Diversity Combiner with a signal lock (green) is shown in Figure 126.

If diversity combiner is On, any changes made to one channel will be copied to the other channel so that both channels are synchronized. If diversity combiner is Off, each channel is separate and setting one channel does not copy settings to the other channel.
If the Combiner is On and Frequency Diversity On is selected, the frequency for Channel 2 may be set differently from Channel 1.

4.7.3 Configure Screen

The Configure screen may be accessed via the Configure buttons on the Network screen, as described previously, or via the Configure option on the Header Tool bar, as shown in Figure 118.

![Figure 127: RDMS™ Browser Interface Header Tool Bar](image)

4.7.3.1 Combiner (Optional)

A pre-detection diversity combiner is available as an option for dual-channel receivers.

If diversity combining is installed on the RDMS™, it can be enabled by clicking on the check box in the Combiner field, as shown in Figure 128.

![Figure 128: Configure Screen, Combiner Section](image)

When the combiner is enabled on one channel, the second channel will automatically reflect this change.

Additionally, any parameter changes made by the user in one channel will automatically be made for the second channel, from which the combined signal is partially derived. The only setting that can still be changed individually when the diversity combiner is turned on is the channel frequency, which allows for frequency diversity to be implemented. To illustrate the synchronization of settings, the second channel’s settings menu highlight bar will mimic the navigation path being taken by the user in the first channel.

Note: Whenever the Diversity Combiner is On, any changes made to the Frequency option (even with Frequency Diversity On enabled) causes Modulation Scaling for both channels to be set to the same value. However, if Mod Scaling was set to Locked when the Frequency was changed, Mod Scaling will change to Tracking.

4.7.3.1.1 Frequency Diversity (Available with Diversity Combiner)

The Frequency Diversity option allows the user to independently change the frequency of each channel when the diversity combiner is On.

Click on the check box in the Frequency Diversity field to enable.
If there are two channels, the Combiner is set to On, and Frequency Diversity is Off, the channels are updated simultaneously.

4.7.3.2 Channel Selection and Basic Settings

The user may view channel displays and the Diversity Combiner display on the Configure screen in the Browser Interface. If the Combiner is On, only Channel 1 displays (Figure 129). Click on any field within the Configure screen to change and save settings for Channel 1, Channel 2, or both channels (Figure 130).
The Configure screen includes all of the primary settings related to the receiver, including Frequency, Mode, Bit Rate, Data and Clock Polarity, Equalizer, DQ Encapsulation, and Derandomizer.

Note, Equalizer is available in all modes except STC and STCLDPC.

The settings can be adjusted by clicking on a check box (to enable or disable an option), clicking on a drop down menu and making a selection, or, in the case of Frequency and Bit Rate, typing the number directly or using up/down scroll arrows to select the desired value.

To save the current configuration as a preset, click on the Save as a Preset button or click on the Refresh button to refresh the settings without saving. To create or modify other presets, use the Browser Interface Presets screen.

When selecting new settings on the Browser Interface Configure screen, these settings are not sent to the receiver and activated until the user clicks on the Save Presets button. New options are provided to the user when certain options are selected, for example, Frequency Diversity, Time Aligner, and Diversity Combiner Mode are only available after Combiner is enabled and saved. Then other options may be changed and saved.

The Browser Interface alerts the user whenever a Save or Refresh is required. When a Save is necessary, the green Save Settings button is enlarged and a Save Changes message displays in the message area on the right side of the screen, as shown in Figure 132. Other notifications display in red text on the right side.
4.7.3.2.1 Data and Clock Polarity Settings
The Data Polarity and Clock Polarity are set by clicking on drop down arrow to display the menu, then selecting the desired option, Normal or Inverted, as shown in the Data Polarity example in Figure 133.

![Figure 133: Settings Window, Data Polarity Selection](image)

4.7.3.2.2 Derandomizer Settings
The Derandomizer is set to On or Off by clicking on the check box to enable or disable the derandomizer (Figure 134).

![Figure 134: Settings Window, Derandomizer Check Box](image)
4.7.3.2.3 Differential Decoding Settings (SOQPSK Only)
The Differential Decoding option is set to On or Off by clicking on the check box (Figure 135) to enable or disable the differential decoding in SOQPSK mode. Differential Decoding defaults to enabled.

Figure 135: Configure Basic Settings Window-SOQPSK Mode

4.7.3.3 Configure Advanced Settings
The Configure screen also includes a secondary window for Advanced Settings. These include Measured Bit Rate, IF Filter, Output Muting, Muting Timeout, and Power Type, as shown in Figure 136.

Figure 136: Advanced Settings Window
4.7.3.3.1 Measured Bit Rate Setting
Measured Bit Rate displays the receiver’s bit rate on the input signal. This value may be copied and set as the specified bit rate. The purpose of this process is to eliminate unintended bit rate offset error so that the receiver can make full use of its bit synchronizer tracking range, or optionally reduce its tracking range. For the receiver to have an accurate measurement, however, the input signal must be close enough to the previously commanded bit rate to be within the current bit synchronizer lock range and actually be locked.

4.7.3.3.2 IF Filter
Based on the receiver’s high level of integration, the proper IF filter is automatically selected based on the current mode and bit rate settings of the demodulator. Although manual filter selection is available through the IF Filter Menu, manual selection is not recommended. In the case of a receiver with diversity combining enabled, the two channels must have the same IF filter selected for proper operation.

The basic premise of trellis demodulation relies on the precise phase modulation of the transmitted signal. Some older analog transmitters have an inordinate amount of phase noise, reducing the effectiveness of the trellis demodulator. In Tier 0 (PCM/FM), enabling the Phase Noise Compensation option relaxes the requirements of the trellis demodulator, allowing better receive performance for transmitters with a high degree of phase noise.

When the modulation is set to PCM/FM, the Filter Settings window includes settings for IF and Phase Noise Compensation. In any other mode, only the IF Filter option is available.

4.7.3.3.3 Output Muting
The Output Muting option sets the muting value to On or Off. When Output Muting is set to On, the receiver stops sending clock and data information when the timeout value is reached. This option is beneficial to someone using a recorder with limited space. For example, if data is not locked to a valid signal or is outside the valid range, the information is muted (stopped) so the recorder is not filled with bad data.

4.7.3.3.4 Muting Timeout
The Muting Timeout option is used to set a timeout value (in milliseconds). This setting is used to determine when to mute (stop sending data) when the Output Muting option is set to On. The valid range is 0 to 46016 milliseconds. The default value is 1000.
4.7.3.3.5 AFC Mode
The AFC (Automatic Frequency Control) Mode option, shown in Figure 138, compensates for frequency offset in the received signal relative to the expected carrier frequency. Demodulators for all modes in the RDMS™ contain frequency-tracking loops that can accommodate some amount of frequency offset. The amount of offset that can be tolerated depends on the mode and is generally a small percentage of the bit rate. If the input frequency offset is greater than this amount, then AFC is needed to make up the difference.

The two main sources of offset are (1) reference oscillator frequency differences between the transmitter and the receiver, and (2) Doppler shift. Reference oscillator differences are constant or very slowly time-varying. Doppler shift, by its nature, tends to be dynamic. The optimal AFC mode depends on the source and magnitude of the frequency offset. Valid selections are Off, Acquire, Hold, and Track.

Note that the AFC is automatically overridden (Off) if the demodulator can natively tolerate at least 50 kHz of frequency offset. This prevents the AFC from potentially interfering with frequency tracking if AFC is unlikely to be needed. Override may be disabled, and many other detailed AFC parameters may be controlled, via the command line interface. Refer to section 4.9.1.3 for AFC command details.

4.7.3.3.5.1 AFC Mode - Track
When AFC Mode is set to Track, the AFC continuously attempts to estimate and compensate for the input frequency offset unless the input Eb/N0 falls below a predefined threshold. This mode is best suited for dynamic frequency offsets.

4.7.3.3.5.2 AFC Mode - Hold
When AFC Mode is set to Hold, the AFC holds its current compensation. This mode is best suited for static frequency offsets. It may be advantageous relative to the Acquire mode if the channel is initially “known good” but may become impaired during a mission.

4.7.3.3.5.3 AFC Mode - Off
When AFC Mode is set to Off, the AFC continuously provides zero compensation. This mode is best suited for small frequency offsets that are within the amount of frequency offset that the demodulator can natively tolerate.

4.7.3.3.5.4 AFC Mode - Acquire
Acquire is the default AFC Mode. After tuning the receiver, the AFC attempts to estimate and compensate for the input frequency offset. It holds this compensation unless the frequency offset changes substantially or the signal

Figure 138: Advanced Settings Window, AFC Mode Menu
quality improves so that it can make a better estimate. This mode generally works well with static or slowly changing frequency offsets. It may, under unusual circumstances, select and hold an erroneous frequency offset if the channel is highly impaired by interference or dynamic multipath.

4.7.3.3.6 Time Aligner

The Time Aligner option is only available with the Combiner option enabled and set to On. The Time Aligner can be disabled or enabled. When disabled, it remains Off and does not affect the combiner.

Clicking on the check box to enable the (combiner) time aligner, as shown in Figure 139, lets it determine when to operate (with no user intervention).

![Figure 139: Advanced Settings Window, Time Aligner Selection Checked](image)

Maximal ratio combining can only achieve optimal performance if the Channel 1 and Channel 2 input signals are accurately phase- and time-aligned. Traditionally, diversity combiners have performed phase alignment only, relying on the telemetry system design to provide adequate time alignment.

However, there are cases in which time alignment cannot be easily guaranteed. Such cases include frequency diversity and spatial diversity, where the propagation of transmit and receive paths for Channel 1 and Channel 2 may be quite different through cables, equipment, and the air. As bit rates continue to increase, fixed latency differences are magnified in relation to the bit period.

The Quasonix RDMS™ Combiner can perform both phase alignment and time alignment of the Channel 1 and Channel 2 signals. The Time Aligner is capable of correcting up to ±1300 nanoseconds of time skew between channels (about a quarter mile of free-space propagation). Similar to phase alignment, time alignment is dynamic, accommodating changes in relative target antenna positions over time.

When enabled, the Time Aligner continuously measures skew between channels but remains in a “monitor” state (with no timing correction) as long as the skew remains below a predefined threshold. When the skew exceeds the threshold, the Time Aligner switches to a “run” state (with full timing correction) as long as the signal quality is sufficient for it to continue to track timing skew.

If the propagation delay between channels is well-controlled and small, the Time Aligner may be disabled to guarantee minimal timing jitter.
4.7.3.4 Diversity Combiner Mode

The Quasonix RDMS™ Combiner can operate in one of two modes, Maximal Ratio or Best Source, as shown in Figure 140. Click on the drop down arrow to display the menu, then select the desired option.

Maximal Ratio combining provides the best pre-detection combining possible, as long as the Channel 1 and Channel 2 input signals can be phase- and time-aligned by the Combiner. In this mode, the Combiner aligns the signals and, using an accurate measure of signal quality, generates their weighted sum. This sum contains the best of both signals plus uncorrelated noise, resulting in up to 3 dB improvement in effective SNR over each individual channel.

Best Source combining is a suboptimal method of combining, but it works for cases in which the Channel 1 and Channel 2 input signals cannot be phase- and time-aligned by the Combiner. Such cases would be rare, but one possible case might be spatial diversity over larger distances than the Combiner Time Aligner can compensate. In this mode, the Combiner continuously selects the channel with better signal quality, so there is no improvement in performance relative to the current best channel.

4.7.3.5 PCM Encoding

The RDMS receiver always outputs NRZ-L data. The PCM Encoding option allows user input (if different than NRZ-L) to be converted by the receiver from a specific transmitted type to NRZ-L. Select the desired encoding format from the drop down menu, as shown in Figure 141.

Available PCM encoding options are:

- NRZ-L: Non-return-to-zero, level
- NRZ-M: Non-return-to-zero, mark
- NRZ-S: Non-return-to-zero, space
- RZ: Return-to-zero
- Biphase-L: Biϕ, level
- Biphase-M: Biϕ, mark
- Biphas-S: Biϕ, space
- DM-M: Delay modulation (Miller code), mark
- DM-S: Delay modulation (Miller code), space
- M2-M: Modified delay modulation (Miller squared code), mark
- M2-S: Delay modified modulation (Miller squared code), space
4.7.3.6 Advanced PCM/FM Settings

The Advanced PCM/FM Settings window is shown in Figure 142. When the modulation is set to PCM/FM, the Scale Settings window includes settings for modulation scaling and video scaling indexes. In any other mode, the Scale Settings are not available.
4.7.3.6.1 Modulation Index Scaling Mode
The Modulation Index Scaling Mode option allows the operator to manually set the modulation scale index. This enables the receiver to operate at the optimum range of modulation desired by the user. The valid modulation scaling index range is 0.350 to 8.000.

Modulation Index Scaling Mode contains four settings: Track, Hold, Off, and Acquire. Modulation Scaling is a method used to retain the maximum trellis-coding gain of a non-ideal FM signal. For additional functional details, refer to section 4.6.2.11 Modulation Scaling in the front panel section.

![Figure 143: Advanced PCMFM Settings Window, Modulation Index Scaling Mode Menu](image)

4.7.3.6.2 Modulation Persistence
Modulation Persistence allows the current state of the Modulation Scaling setting to be retained following a power-off cycle. The default value is Off (not checked), as shown in Figure 144.

![Figure 144: Advanced PCMFM Settings Window, Modulation Persistence Not Checked](image)

When modulation scale index is set, the Modulation Scaling option on the Configure screen is simultaneously changed to Hold. The Hold notation includes the new index number that the operator has chosen.
If the held index number is to be retained following a power-off cycle of the rack, then turn on Modulation Persistence by checking the Modulation Persistence box on the Advanced PCMFM Settings screen. Save the current setup profile using the Save Presets option. Refer to section 4.7.4.1.

When the RDMS™ is powered on, the default setting is Acquire, unless the unit was powered off from a preset condition. If the unit was powered off from an unmodified preset setting, then the default condition of Modulation Scaling is as defined in the preset. When Tracking is set, the modulation scale index is actively being tracked.

Note: The active setting is not saved when the rack is powered off, unless the Modulation Persistence option was set to On.

If there are two channels, and the Combiner is set to On, the Modulation Scaling is NOT linked. Modulation Scaling for channel one and channel two functions independently.

When the RDMS™ has a good lock on the target transmitter, Modulation Scaling should be set to Hold.

When Modulation Scaling is set to Hold or Off, the graphs display in green. This indicates the optimal Modulation Index is set.

Mod Scaling should be turned off when a new generation, digitally synthesized transmitter is the source. Digitally synthesized transmitters do not have a variable deviation sensitivity adjustment, and as such are not subject to inaccurate modulation index settings.

When Modulation Scaling is set to Acquire, the graphs display in yellow.

Acquire mode has two states: Armed and Triggered. When Modulation Scaling is set to Acquire, the state is set to Armed. In Armed state, modulation scaling operates continuously.

If the receiver is locked and the delta h (the change in modulation index) has settled below the delta h threshold for the specified settling time, the state changes to Triggered and the eye pattern turns green. In Triggered mode, the estimated h (modulation index) is monitored but the scale is not updated.

If delta h goes above the delta h threshold and settles again, the receiver is still locked, and the Eb/N0 at the settling point is higher than the last settling point, the current scaling is updated with the new estimate.

There is no transition from Triggered back to Armed except for setting the mode to Acquire again.

4.7.3.7 Mod Scale Index

The Mod Scale Index option allows the operator to manually set the modulation scale index. This enables the receiver to operate at the optimum range of modulation desired by the user.

When modulation scale index is set, the Modulation Scaling option is simultaneously changed to Hold. The Hold notation includes the new index number that the operator has chosen.

If the held index number is to be retained following a power-off cycle of the rack, then turn on Mod Persist from the Main Menu. Refer to section 4.6.2.12, Modulation Persistence.

To change the Modulation Scale Index, select Mod Scale Index, then press the Enter key on the front panel. A dialog screen displays prompting the operator to enter a new modulation scale index using the rack’s front panel numeric keypad. The valid modulation scale index range is 0.350 to 8.000. The Index Entry screen is shown in Figure 86. When the new value is entered, press the Enter key on the keypad.

The value shown on the Browser Interface screen is read-only, as shown in Figure 145.
To clear any held modulation scale index number, go to the Main Menu and toggle the Mod Scaling option back to Tracking. After Mod Scaling is set to Tracking, the modulation index follows the receiver’s present estimate of the mod index.

4.7.3.7.1 Video DeEmphasis

The Video DeEmphasis option is used to set the Video DeEmphasis value to Off, NTSC, or PAL. This option should be used when a corresponding video pre-emphasis filter is used on the video transmit side.

4.7.3.7.2 Phase Noise Compensation

The Phase Noise Compensation (PNC) option is used to set the Phase Noise Compensation value to On or Off. Refer to Appendix C in section 11 for detailed information about PNC.

4.7.3.7.3 Video Scale

The Video Scale option sets the peak-to-peak amplitude on the video outputs. By default the video output is 1 V peak-to-peak using a standard deviated NTSC video signal. This setting allows the user to compensate for a system where this is not the case. The valid range is -128 to +128.
4.7.3.8 System Antenna Control Settings

The System Antenna Control window, shown in Figure 147, includes the following AGC (Automatic Gain Control) parameters:

- AGC Polarity (Positive/Negative)
- AGC Scale (in dB/V)
- AGC Time Constant (in ms)
- AGC Zero Mode
- D/C Antenna

![System Antenna Control Window](image)

Figure 147: System Antenna Control Window

4.7.3.8.1.1 AGC Polarity

The AGC Polarity option is used to set the automatic gain control polarity. Click on the drop down menu to select Positive or Negative, as shown in Figure 148.

![System Antenna Control Window, AGC Polarity Selection](image)

Figure 148: System Antenna Control Window, AGC Polarity Selection

4.7.3.8.1.2 AGC Scale

The AGC Scale option adjusts the voltage of the AGC back panel BNC output. The scale can be set in units of dB/V (decibels per volt). The higher the scale is set, the more dynamic range the AGC output can represent, but the lower its resolution will be. Refer to AGC Scale on the front panel, section 4.6.2.14.2, for an example.
4.7.3.8.1.3 AGC Time Constant

The Time Constant option sets the time constant of the AGC back panel BNC output. The time constant can be set in units of ms (milliseconds). The higher the time constant, the slower the AGC output voltage will move in response to changes in input signal level.

Because the AM back panel BNC output tracks any input signal level changes that are not tracked by the AGC, the AM output will include any signal amplitude frequency content from (approximately) the inverse of the AGC time constant up to the AM bandwidth limit. For example, if the AGC time constant is set to 100 ms and the AM bandwidth is set to 100 Hz, then the AM output will include any AM frequencies between roughly 10 Hz and 100 Hz.

4.7.3.8.1.4 AGC Zero Mode

The AGC Zero Mode option is shown in Figure 149. The AGC Zero Hold (On/Off) option from the 2nd Generation RDMS was replaced by AGC Zero Mode. There are three available settings, Manual, Hold, or Hold and Save.

- Manual - Means the AGC must be zeroed manually after any frequency or IF bandwidth change, or after a power cycle
- Hold - Means the AGC holds its zero level after any frequency or IF bandwidth change but must be zeroed manually after a power cycle
- Hold and Save - Means the AGC holds its zero level after any frequency or IF bandwidth change, or after a power cycle

The AGC Zero mode (manual, hold, or hold and save) remains set if a waveform mode changes.

4.7.3.8.1.5 Downconvert Antenna

The DC Antenna option is only available when using the 5-band downconverter AND P and C band are enabled.

- When the downconverting antenna is not available, this command displays only an assumed value.
- The downconverting antenna setting only applies to C band frequencies.
- Click on the box in the DC Antenna field to check the box and enable the option, as shown in Figure 150.
The downconverting antenna has an LO that is used to downconvert C band signals (4400 MHz – 5150 MHz) to a lower frequency range known as P band (400 MHz – 1150 MHz) using an LO frequency of 5550 MHz. This results in two issues that are addressed by the downconverting antenna control.

1. Spectral Inversion

 In a downconverting antenna, the LO is higher than the RF (high side injection) and the lower side band result is selected—the spectrum is inverted. All C to P band downconverting antennas are assumed to produce a spectrally inverted signal. The receiver automatically reinverts the signal before it is demodulated. (This is done in the downconversion to 70 MHz IF.) If an actual P band signal is received, it is NOT spectrally inverted and the automatic reinversion done by the receiver improperly causes the signal to appear inverted to the demodulator.

 The demodulator has a mechanism to invert the spectrum in the digital domain. The downconverting antenna setting determines how the spectral inversion is handled for P band signals.

2. C Band Frequency Specification Ambiguity

 It is common to tune to the C to P band downconverted signal by specifying the C band frequency. In a receiver that also has actual C band receiver capability, an ambiguity develops when a C band frequency is specified since it can be applied to either a C or P band signal. The downconverting antenna setting determines how a specified C band frequency is interpreted in a system where both C and P bands are enabled.

 If a C band frequency is specified and the downconverting antenna is enabled, it is assumed the signal is a C to P downconverted signal. The receiver is tuned to the P band equivalent and the automatic inversion is used. If the downconverting antenna is disabled, the receiver is tuned to the specified C band frequency and spectral inversion is not an issue.

 If a P band frequency is specified, it is assumed there is no downconverting antenna. The receiver is tuned to the actual P band frequency and the automatic spectral inversion is disabled.

4.7.3.9 Interfaces Window

The Interfaces Setup window, shown in Figure 151, includes the following parameters:

- AM Bandwidth (Hz)
- AM Polarity (Positive/Negative)
- AM Scale (0.05-2.5)
- AGC Compensate
4.7.3.9.1 AM Bandwidth
To change the AM Bandwidth value, type the desired value or use the up/down arrows to scroll to the appropriate value. The AM Bandwidth can be set from 5.00 to 50000.00 Hz.

4.7.3.9.2 AM Polarity
AM Polarity is set by clicking on the drop down menu to select the desired value, Positive or Negative, as shown in Figure 152.

4.7.3.9.3 AM Scale
To change the AM Scale value, type the desired value or use the up/down arrows to scroll to the appropriate value. The AM Scale has a range from -128 to +128. At its default setting of 1, the response is 2V p-p, into a 75 ohm load with a 50% AM.

4.7.3.9.4 AGC Compensate
The user may enable AGC Compensation by clicking on the check box. Refer to Appendix B for more information about the AGC Compensation function.
4.7.3.10 Zero AGC Button

Automatic Gain Control (AGC) may be set to zero (0) by clicking on the green Zero AGC button in the Advanced section, shown in Figure 153. One or two buttons are available depending on the number of channels and the combiner mode.

![Advanced Buttons, Zero AGC Button](image)

Zero AGC is used to set a baseline for background radio noise levels. A typical application of the AGC Zero function is explained in the following example.

a. Connect the receiver to its normal RF signal source, such as antenna, LNA, cabling, and splitters.

b. Orient the receiving antenna in a direction that is expected to yield the lowest signal level that the receiver is likely to encounter.

c. Activate AGC Zero under this condition by clicking on the Zero AGC button.

The AGC output voltage is set to zero volts DC at a time when the receiver input is at its minimum value. This process ensures that the AGC output voltage will not cross through zero volts DC under normal operation.

To confirm AGC Zero, view the Monitor screen RSSI bar graph. If AGC is not zero, the graph is grey and there is no AGC Zero value displayed, as shown in Figure 154. When AGC is zero, the bar graph is not grey and the AGC Zero value is displayed, as shown in Figure 155.
4.7.3.10.1 RSSI Display

The RSSI display has two modes depending on the option selected in the RSSI Display drop down menu, shown in Figure 153.

If “Absolute” was the RSSI Display selection for the channel, the actual signal strength is displayed.

If “Relative” was selected, the RSSI displayed is relative to AGC Zero. The following bullets apply to RSSI Relative:

- a value of zero indicates no input signal
- a value above zero indicates how strong the signal is above no input
• “*** dBm” displayed (Figure 124) indicates AGC is not zeroed and the value is invalid
• small “r” displayed next to the RSSI label indicates AGC Zero Relative was selected

![Signal Graph and Signal Indicators Windows, Zero AGC RSSI Display “Relative”](image)

Figure 156: Signal Graph and Signal Indicators Windows, Zero AGC RSSI Display “Relative”

4.7.3.11 Reset to Factory Defaults Button

The Reset to Factory Defaults button, shown in Figure 157, sends a command to reset the RDMS hardware to factory default settings. During the process, the Browser Interface is temporarily unavailable.

![Advanced Buttons, Reset to Factory Defaults Button](image)

Figure 157: Advanced Buttons, Reset to Factory Defaults Button

4.7.3.12 Shutdown Hardware Button

The Shutdown Hardware button, shown in Figure 158, sends a command to turn off the RDMS hardware and disables all remote access. There is no remote command to power up the hardware.

To restart an RDMS that was powered down due to intentional shutdown or power failure:

• Cycle the power switch on the front panel of the RDMS receiver
• Remove AC power and reapply to the hardware, then cycle power on the front panel
4.7.4 Presets

The Presets functionality is accessed via the Presets option on the Tool bar, as shown in Figure 159.

4.7.4.1 Save Presets

Accessed from the Presets option in the Tool Bar, Saved Presets screen, shown in Figure 160, allows the user to save and load settings stored on the RDMS™ receiver. Closeups of the right and left side of the Presets screen are shown in Figure 161 and Figure 162.
Figure 161: Presets Screen, Closeup of Left Side

Figure 162: Presets Screen, Closeup of Right Side
The Saved Presets screen contains a list of eight (8) saved setup files. Files are accessed by clicking on the View/Modify button next to the desired preset.

When the user clicks on a View/Modify button, the Preset: View or Modify Preset screen opens, as shown in Figure 163. The contents and layout of this screen is similar to the Configure screen.

Type a name for the new preset file along with the desired description in the Preset Name and Preset Description fields as shown in Figure 164. Changing the name and description are not required but customizing them provides immediate recognition for the user. It also helps to eliminate confusion when changing an existing preset. Longer preset names display in the Browser Interface but may be truncated on the front panel of the RDMS™.
The settings can be configured by clicking on a check box (to enable or disable an option), clicking on a drop down menu and making a selection, or, in the case of Frequency and Bit Rate, typing the number directly or using up/down scroll arrows to select the desired value. New options are provided to the user when certain options are selected, for example, Frequency Diversity, Time Aligner, and Diversity Combiner Mode are only available after Combiner is enabled and saved.

If all of the settings are configured as desired, click on the green Save Settings button. If the configuration must be modified, select or deselect settings until the desired configuration is achieved. Then click on the Save Settings button.

To save the current configuration as a preset, click on the Save as a Preset button in the Browser Interface Configure screen.

A “successfully saved” message displays in the Message bar, as shown in Figure 165.

![Figure 165: Preset: View or Modify Preset Screen, Information Successfully Saved Message](image)

When the user clicks on the Presets option in the Menu bar, the Saved Presets screen displays clearly showing the new preset, as shown in Figure 166.
4.7.4.2 Load Presets

Loading a preset configuration is a quick way to set up an RDMS™ with specific settings. The RDMS™ has eight (8) default configurations pre-loaded and ready to use on the receiver. As shown in the previous section, the user may set up and save other configurations for later reuse.

To load a preset, click on the Presets option on the Tool bar, as shown in Figure 167.

When the Saved Presets screen displays (Figure 168), click on the green Load Preset button on the line containing the desired preset.
While the preset is loading, the front panel on the receiver displays a wait message, as shown in Figure 169. The preset is finished loading when the wait message no longer displays.

In addition to displaying the system information, this screen is also used to add a Rack Alias, if desired. Type a new name into the Rack Alias field, as shown in Figure 172, then click on the Rename button.
4.7.6 Footer Tool Bar

The Footer Tool bar, shown in Figure 173, provides access to additional Browser Interface functionality.
4.7.6.1 Help

The Help option on the Footer Tool bar, provides a link to the Rack-Mount RDMS Installation and Operation manual as well as contact information for Quasonix. The Help screen is shown in Figure 174.

![Figure 174: Help Screen](image)

4.7.6.2 Page Access

The Page Access Management screen, shown in Figure 175, provides user feedback and control regarding configuration via multiple browser sessions that may be occurring on the receiver. As noted earlier, the 3rd Generation RDMS receiver uses a built-in web server to provide monitoring and control. Multiple users may access the receiver. To minimize configuration or control conflicts, the Browser Interface alerts users of potential conflicts. Users may choose to override controls to provide access to specific pages.
The closeup images in Figure 176 and Figure 177 show the pages (screens) being accessed, their status, the controlling IP Address for the RDMS receiver, the time when control was acquired, and the length of time the user has been in control.

Users trying to access one of the browser screens, such as Configure, that was recently visited by another computer receive a Page Access Error message, as shown in Figure 178. The message provides a link to the Page Access Management screen so the user may review and release control as needed.
4.7.6.3 Export

Export Configuration, shown in Figure 179, and Import Configuration provide a way for users to save and retrieve RDMS receiver settings and information. This functionality may be useful to provide a record of settings used during test missions, as a way to quickly switch between receiver setups, or as a way to backup the receiver settings. The files are saved locally, based on the browser’s default settings, often the Downloads folder. These files may be moved or renamed as needed. Note, modifying the contents of the files is not recommended.

While in the Export Page, the user is able to select Current Receiver Settings, Saved Presets, and System Information by clicking on the check box associated with each option.

The Export Configuration button activates the download of the selected items into a single JSON type file that may be imported and read by the same, or other, RDMS Receivers.

4.7.6.4 Import

The Import Configuration screen, shown in Figure 180, is used to import files that were previously exported (as described in the previous section).
1. Click on the Browse button to open a File Upload window on the desktop.

2. Click on the Upload File button.

After the import file is selected, the Import Configuration screen allows the selection of specific items to be immediately copied to the current device, as shown in Figure 181.

Note that any settings on the receiver in the selected areas will be overwritten. This includes the Current Configuration.

4.7.6.5 Admin (Quasonix Factory Use Only)

The Admin link on the footer tool bar is used for Quasonix factory use only.
Figure 182: Quasonix RDMS Administration Window
4.8 Access via Telnet

Telnet provides access to the individual receiver channel’s underlying serial control interface. The serial control interface is not recommended for typical Rack-Mount Receiver usage. The Telnet interface should only be accessed by advanced users. **Contact Quasonix customer support before using these options.**

NOTE: Access to this serial control interface is provided primarily for debugging purposes. Unlike the standard front panel and browser interfaces, the serial control interface within the Telnet screen is not safeguarded from accidental or improper changes to the receiver’s configuration.

It is **strongly** recommended that users contact Quasonix Technical Support (Tel: 513-942-1287) prior to using the Terminal serial control interface.

Changes made within the serial command interface of the Terminal screen are not automatically filtered into the Configuration screen. However, the browser interface is able to detect when serial commands are given, at which time the green Refresh Settings screen button begin to flash in order to prompt the user.

1. In a command window, type: **telnet open {IP address of the receiver to connect to} 8888.**
2. Press the Enter key on the keyboard.

![Figure 183: Telnet Into Terminal](image)

The next screen (Figure 184) shows the RDMS channel subscribed to by Telnet.

Method 1-Use the Subscribed Channel

3. At this point, the user may ignore the instructions on the screen and press the Enter key again.

![Figure 184: Channel Subscribed](image)

The command prompt for the mode in the subscribed channel displays immediately, as shown in Figure 185. This is a portal to the receiver’s serial control interface and allows the user to communicate to the individual receiver “brick” using its basic command protocol.
Method 2-Unsubscribe and use a different channel

Look at the second Telnet screen again (Figure 186).

1. Follow the on-screen instruction and press the ` key. This is the very first key on the left side of the keyboard under the tilde (~).

The RDMSIII Telnet Command Menu is shown in Figure 187.
The command menu is used to unsubscribe from connections and reconnect to a specific channel. Figure 188 shows all connections being unsubscribed.

![RDMSIII Telnet Command Menu-Unsubscribe All Channels](image)

In Figure 189, the user typed a 1 to subscribe (connect) to channel 1. At this point, the user may press the Enter key to continue, as described in Method 1.
All Quasonix serial commands are alphabetic characters, followed by 0, 1, or 2 arguments. If the command is issued with arguments, there must be a space after the alphabetic characters. The commands are not case sensitive.

All commands generate a response of one or more lines. The length of the response depends on the verbosity level (set by the VL command – this is an advanced command). The last response line is always the currently selected mode (PCMFM, SOQPSK, CPM, or PSK), followed by the character “+” or “>”, depending on the version of the firmware. This prompt signifies that the RDMS™ is ready to accept new characters.

A complete list of available serial commands can be found in section 4.9 or by typing HA.
4.9 Tier 0 (PCM/FM), Tier I (SOQPSK-TG), and Tier II (MULTI-H CPM) Commands

The following table describes all receiver user commands. Listed are the command code, name, description of the command, whether specific options must be ordered or the command is standard on all receivers, and whether the command is restricted to specific waveform modes.

Multiple commands may be typed on a command line if they are separated by a semicolon “;”. There is a limit of 256 characters per command line, including semicolons. Commands with no parameters request status only.

Refer to command HA in section 4.9.1.24 for specific help in reading the command sets.

Refer to section 4.9.1 for additional command set detail and examples. Complete information is also available in the command Help.

For example:

 PCM/FM>FR 2200.5; BR 6.000; AGC

results in the following:

 Frequency set to 2200.5 MHz
 Bit Rate set to 6.000 Mbps

and status for all AGC parameters are displayed as:

 AGC control enabled
 AGC control mode RF
 AGC automatic mode select enabled
 AGC zero mode Auto
 AGC zeroed at -110.22 dBm (13.38 dB attenuation)
 AGC auto zero hold threshold 0.000 dB
 AGC auto zero time constant 0.250 seconds
 AGC loop total power 13.375 dB
 Bulk attenuator AGC control enabled, switched out

Ctrl Y repeats the command sequence without having to retype the commands.
<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Name</th>
<th>Description</th>
<th>Option(s) Required</th>
<th>Mode Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Help Message</td>
<td>Displays abbreviated list of available Help commands</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>ACU</td>
<td>Antenna Control Unit</td>
<td>Report or set antenna control unit automatic gain control (AGC) settings</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>AEQ</td>
<td>Adaptive Equalizer</td>
<td>Report equalizer status and control adaptive equalizer settings</td>
<td>EQ</td>
<td>None</td>
</tr>
<tr>
<td>AFC</td>
<td>Automatic Frequency Control</td>
<td>Report or set a variety of automatic frequency control parameters</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>AHM</td>
<td>Analog High Speed Mixer</td>
<td>Displays and controls high speed (video) output mixer settings</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>AHO</td>
<td>Analog High Speed Output (Tape Output)</td>
<td>Displays and controls high speed (video) output settings</td>
<td>Standard</td>
<td>PCM/FM</td>
</tr>
<tr>
<td>ALM</td>
<td>Analog Low Speed Mixer</td>
<td>Displays and controls low speed (video) output mixer settings</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>ALO</td>
<td>Analog Low Speed Output</td>
<td>Displays and controls low speed (ACU) output settings</td>
<td>Standard</td>
<td>PCM/FM</td>
</tr>
<tr>
<td>AL</td>
<td>Lock Status Command</td>
<td>Reports system lock status</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
<td>For Bit Error Rate commands and information, refer to Appendix A, Bit Error Rate Testing</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>BR</td>
<td>Bit Rate</td>
<td>Report or set baseband bit rate</td>
<td>Standard</td>
<td>For Asynch PSK (legacy) modes, BR A and BR B must be specified separately</td>
</tr>
<tr>
<td>CLH</td>
<td>Command Line History</td>
<td>Reports last 25 commands issued</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Name</td>
<td>Description</td>
<td>Option(s) Required</td>
<td>Mode Restriction</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>CMB</td>
<td>Combiner Control</td>
<td>Displays and controls combiner settings</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>CP</td>
<td>Clock Polarity</td>
<td>Report or set clock polarity inversion state</td>
<td>Standard</td>
<td>For Asynch PSK (legacy) modes, CP A and CP B must be specified separately</td>
</tr>
<tr>
<td>DA</td>
<td>Downconverting Antenna</td>
<td>Displays and controls receiver C band to P band downconverting antenna</td>
<td>P band enabled receiver</td>
<td>None</td>
</tr>
<tr>
<td>DAHO</td>
<td>Demod Analog High Speed Outputs</td>
<td>Source control command for the demod; controls source, for high speed analog outputs, scale, offset, and polarity</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DALO</td>
<td>Demod Analog Low Speed Outputs</td>
<td>Source control command for the demod; controls source, for low speed analog outputs, scale, offset, and polarity</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DD</td>
<td>Differential Decoding</td>
<td>Enable or disable differential decoding</td>
<td>Standard</td>
<td>SOQPSK</td>
</tr>
<tr>
<td>DDHO</td>
<td>Demod Digital High Speed Data Output</td>
<td>Source control command for the demod; controls source, for high speed digital data outputs, scale, offset, and polarity</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DDLO</td>
<td>Demod Digital Low Speed Data Output</td>
<td>Source control command for the demod; controls source, for low speed digital data outputs, scale, offset, and polarity</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DDO</td>
<td>Digital Data Outputs</td>
<td>Source control command for the platform; controls source, for digital data outputs, scale, offset, and polarity</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DHI</td>
<td>High Speed Digital Input</td>
<td>Displays and controls high speed digital input settings</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DLI</td>
<td>Low Speed Digital Input</td>
<td>Displays and controls low speed digital input settings</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Name</td>
<td>Description</td>
<td>Option(s) Required</td>
<td>Mode Restriction</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>DOM</td>
<td>Digital Output Muting</td>
<td>Control shut down of clock and data outputs</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DP</td>
<td>Data Polarity</td>
<td>Report or set data polarity inversion state</td>
<td>Standard</td>
<td>For Asynch PSK (legacy) modes, DP A and DP B must be specified separately</td>
</tr>
<tr>
<td>DQE</td>
<td>Data Quality Encapsulation</td>
<td>Displays and controls data quality encapsulation</td>
<td>Standard</td>
<td>ARTM modes</td>
</tr>
<tr>
<td>DR</td>
<td>Derandomizer State</td>
<td>Report or set the derandomizer state</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>DSO</td>
<td>Digital Status Output</td>
<td>Controls the source, polarity, and override states</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction Mode</td>
<td>Report FEC status for enabled modes</td>
<td>-K7</td>
<td>Legacy PSK or PCM/FM</td>
</tr>
<tr>
<td>FL</td>
<td>Force Lock Indication</td>
<td>Diagnostic tool to force the system to indicate locked or unlocked</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>FM</td>
<td>FM Demodulator Settings</td>
<td>Displays and controls FM demodulator settings</td>
<td>Standard</td>
<td>PCM/FM</td>
</tr>
<tr>
<td>FPD</td>
<td>Front Panel Display Status</td>
<td>Displays data sent to the rack used to keep the front panel displays updated</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>FR</td>
<td>Frequency</td>
<td>Report or set receiver center frequency</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>HA</td>
<td>Advanced Help Command</td>
<td>Displays Help commands not frequently used or with more complex construction than the basic two character Help commands</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>IF</td>
<td>IF Filter Control</td>
<td>Display and control IF filter settings</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>MI</td>
<td>Modulation Index</td>
<td>Report or Set Modulation Index Tracking or Acquire</td>
<td>Standard</td>
<td>PCM/FM</td>
</tr>
<tr>
<td>MO</td>
<td>Modulation</td>
<td>Report or set modulation setting</td>
<td>Standard</td>
<td>Limited to modes installed</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Name</td>
<td>Description</td>
<td>Option(s) Required</td>
<td>Mode Restriction</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>OCM</td>
<td>Output Clock Measurement</td>
<td>Displays measured output clock frequency</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>PDC</td>
<td>PCM Decoding</td>
<td>Controls digital decoding such as NRZ-L, NRZ-M, and bi-phase</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>PER</td>
<td>Parameters Erase</td>
<td>Erases the stored parameter set for the current mode; Upon power cycle, resets current operating parameter set to factory default values</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>PERA</td>
<td>All Parameters Erase</td>
<td>Reset all modes to factory default values</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>PL</td>
<td>Input Power Level</td>
<td>Reports or sets the current input power level setting</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>PLD</td>
<td>Parameters Load</td>
<td>Loads the stored parameter set into the current operating parameter set</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>PNC</td>
<td>Phase Noise Compensation</td>
<td>Report or set phase noise compensation state</td>
<td>Standard</td>
<td>PCM/FM</td>
</tr>
<tr>
<td>PRS</td>
<td>Reset Defaults</td>
<td>Restores factory default parameters for the unit; Default is currently the lowest number modulation supported by the transmitter with the selected band and frequency limits</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>PSV</td>
<td>Parameters Save</td>
<td>Writes the current operating parameter set into a (previously erased) stored parameter set</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>RFD</td>
<td>Reset Defaults</td>
<td>Reset all parameters to factory default values; Erases all parameter data; Resets to default Mode</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>QT</td>
<td>Query Temperature</td>
<td>Report the temperature in degrees Celsius</td>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>SDI</td>
<td>Signal Degradation Information</td>
<td>Sets signal degradation information enable or disable parameters</td>
<td>Standard</td>
<td>SOQPSK</td>
</tr>
</tbody>
</table>
4.9.1 Additional Command Set Details

4.9.1.1 Antenna Control Unit - ACU

The ACU command displays and controls the antenna control unit settings.

ACU [M <m>|C <c>|O <o>]

- **M <m>** - Sets antenna control mode to <m>

 where: <m> - Control mode
M - AGC time constant and AM bandwidth set manually

S - AGC time constant and AM bandwidth set based on antenna scan

C <e> - Sets AGC compensated AM enable to <e>

where: <e> - Enable

0 - Disabled

1 - Enabled

O <s> - Sets antenna control output to <s>

where: <s> - Signal source

0 - Channel 0

1 - Channel 1

C - Combiner

ACU [S [T <t>|R <r>]] - Antenna scan settings

T <t> - Sets antenna mode scan type to <t>

where: <t> - Scan type

 C - Conical scan

 E - E-scan

R <r> - Sets antenna mode scan rate to <r>, 10.00 to 50.00 Hz

ACU [AM [<p>|S <s>|B]] - Antenna control unit AM settings

<p> - Sets AM output polarity to <p>

where: <p> - Polarity

{0|+} - Normal

{1|-} - Inverted

S <s> - Sets AM output scale to <s>, -128.0 to 128.0

B - Sets manual mode AM detector bandwidth to , 5.00 to 50000.00 Hz

ACU [AGC [<p>|S <s>|T <n>]] - Antenna control unit AGC settings

<p> - Sets AGC output polarity to <p>

where: <p> - Polarity

{0|+} - Normal

{1|-} - Inverted

S <s> - Sets AGC output scale to <s>, 1.0 to 50.0 dB/V
T <n> - Sets manual mode AGC time constant to <n>, 0.1 to 1000.0 ms

Examples:

ACU Report ACU related status
 PCMF$acu
 ACU mode manual
 AGC compensated AM on
 Antenna scan type conical
 Antenna scan rate 30.0 Hz
 Manual AM bandwidth 100.0 Hz
 Manual AGC time constant 100.0 ms
 AM output polarity +
 AGC output polarity +
 AGC output scale 10.0 dB/V
 AM scale 1.0

 ACU AGC 0 Set polarity to Normal
 ACU AGC 1 Set polarity to Inverted
 ACU AGC S 42.0 Set AGC output scale to 42.0 dB/V
 Valid range is 1.0 to 50.0 dB/V
 ACU AGC T 222.0 Set manual mode AGC time constant to 222.0 ms
 Valid range is 0.1 to 1000.0 ms

4.9.1.2 Adaptive Equalizer Control - AEQ

The AEQ command displays and controls adaptive equalizer settings.

AEQ [<e>|T <e>|M <c>|H <t>|R {<e>|S <s>||C {<e>|R <r}>}
 <e> - Sets adaptive equalizer enable to <e>

 where: <e> - Enable
 0 - Disabled
 1 - Enabled

 T <e> - Sets equalizer information tracking display to <e>

 where: <e> - Enable
 0 - Disabled
 1 - Enabled

 H E - Sets equalizer hold reference to Eb/N0
 H Q - Sets equalizer hold reference to DQM BEP
 HD <t> - Sets EQ hold/run delay <t>, 10 to 60000 ms or 0 is Off
HE<tt> - Sets EQ hold below Eb/N0<tt>, -20.000 to 30.000 dB or -100.000 is Off

HQ<tt> - Sets EQ hold below DQM BEP<tt>, 1e-12 to 0.5 or 0.0 is Off

M<tt> - Sets EQ Mu<tt>, -0.125 to 0.125

S<tt> - Sets EQ input scale to<tt>, 0.000 to 16.000

R<tt> - Sets auto reset enable to<tt>

<tt> - Sets adaptive equalizer enable to<tt>

where: <tt> - Enable

0 - Disabled

1 - Enabled

R S<tt> - Sets auto reset speed to<tt>

where: <tt> - Speed

F - Fast

S - Slow

C<tt> - Sets power centering enable to<tt>

<tt> - Sets adaptive equalizer enable to<tt>

where: <tt> - Enable

0 - Disabled

1 - Enabled

C R<tt> - Sets power centering rate to<tt>, 0 to 65535

AEQ[N {C<tt>|L<tt>}]

N C<tt> - Sets added noise coefficient to<tt>, 0.000 to 1.000

N L<tt> - Sets added noise limit to<tt>, 0.000 to 1.000

AEQ[P {T<tt>|S<tt>}]

P T<tt> - Sets power check target to<tt>, 0.000 to 16.000

P S<tt> - Sets power check scale to<tt>, 0.000 to 16.000; default is 0.0

AEQ SC {C<tt>|D<tt>}]

SC C<tt> - Sets symbol check count to<tt>, 0 to 16777215

SC D<tt> - Sets symbol check delta to<tt>, 0 to 16777215

AEQ TAPS [C|CC|CP|G][F<tt>] - Display equalizer tap values

C - Display using CSV format
CC - Display complex values using CSV format
CP - Display polar values using CSV format
G - Display as graphic only
F[<w>] - Display taps in frequency domain of width <w>, 2 to 64

AEQ BINS [C] - Display equalizer bin values
C - Display using CSV format

Examples:
AEQ Report equalizer status
PCMFMSaeq
Adaptive equalizer disabled
Filter Mu 0.000122
Center power 0.250 Total power 0.250 (0.000 dB)
Error magnitude 0.000244
Added noise 0.000000
EQ Eb/N0 auto hold enabled below 10.000 dB Eb/N0
EQ DQM auto hold enabled below 1.000e-02
EQ auto hold reference DQM (and held)

AEQ 0 Disable adaptive equalizer
AEQ 1 Enable adaptive equalizer
AEQ H x Set equalizer hold below Eb/N0 to a value between -20.000 and 30.000 dB;
-100.000 sets equalizer hold to Off
AEQ T 0 Disable equalizer information tracking display
AEQ T 1 Enable equalizer information tracking display

4.9.1.3 Automatic Frequency Control - AFC
The Automatic Frequency Control command reports or sets various AFC parameters.

AFC [M <m>|H <t>|C {A|<c>|L <m>|T {L|H} <t>|R <e>|AD <d>|AS <s>} | or AFC SYS <d>
M <m> - Sets AFC mode to <m>
where: <m> - mode
 O - Off
 H - Hold
 T - Track
 A - Acquire
H <t> - Sets AFC hold below Eb/N0 <t>, -20.000 to 30.000 dB or -100.000 is off
C A - Sets AFC coefficient to be automatically set based on bit rate
C <c> - Sets AFC coefficient to <c>, 0.0003511 to 46.018 seconds
L <m> - Sets AFC correction limit to <m>, 0.000006 to 46.666661 MHz
T L <t> - Sets AFC power detect low threshold to <m>, 0.000000 to 0.999985
T H <t> - Sets AFC power detect high threshold to <m>, 1.000015 to 65536.000000
O <e> - Sets AFC data path override enable to <e>
 where: <e> - enable
 0 - Disabled
 1 - Enabled
AD <d> - Sets Acquire mode minimum delta offset coefficient to <d>, 0.000 to 5.000
AS <s> - Sets Acquire mode settling time to <s>, 10 to 10000 ms with a 5 ms resolution
SYS <d> - Sets the AFC status tracking display mode to <d>
 where: <d> - display mode
 D - Detected
 C - Compensated

The Sys d setting is used to change whether detected or compensated offset is displayed in the SYS output
Note these display values are only different in Acquire mode.

When AFC mode is set to Acquire, the RDMS goes to the 'armed' state. In the armed state, the AFC tracks and
compensates any detected offset regardless of the signal Eb/N0. (In Tracking mode, if the Eb/N0 hold is enabled, the
tracking and compensation stop if the signal Eb/N0 is below the hold threshold.) In this case, the detected and
compensated offset are the same.

The detected offset is averaged over the specified settling time (AFC AS <s>) and then the delta to the last average
is determined. If the delta is less than or equal to the minimum delta (AFC AD <d>), the AFC moves to the
'triggered' state, the compensated offset remains at the point where it was when triggered, and the Eb/N0 and
detected AFC duty cycle where the trigger occurred are saved. In the triggered state, the AFC still detects the offset
but the compensated offset remains fixed at the point where the AFC triggered. In this case, the detected and
compensated offset will likely be different. The detected offset continues the averaging and delta comparison and if
either the delta comparison or the absolute offset relative to the current trigger point exceeds the minimum delta
AND the Eb/N0 is greater than or equal to the Eb/No where the last trigger occurred, the AFC will 'retrigger' and
move the compensated offset to the current, new, offset.

AFC C - Sets the automatic frequency control coefficient

Examples:
AFC C A Set AFC coefficient to be automatically set based on bit rate
AFC C 0.00001 Set AFC coefficient to 0.00001 seconds (ten times slower tracking than default)
Valid range is 4.389e-05 to 5.752 seconds
AFC H - Sets the automatic frequency control hold threshold below Eb/N0

Example:
AFC H 6.000 Set AFC to automatically hold tracking below 6.000 dB Eb/N0
Valid range is -20.000 dB to 30.000 dB; -100.000 dB is Off

AFC L - Sets the automatic frequency control correction limit

Example:
AFC L 42.123456 Set AFC correction limit to 42.123456 MHz
Valid range is 0.000006 to 46.666661 MHz

AFC M - Sets the automatic frequency control mode

Examples:
AFC M O Set AFC to Off
AFC M H Set AFC to Hold
AFC M T Set AFC to Track
AFC M A Set AFC to Auto

AFC T - Sets the automatic frequency control power detect threshold

Example:
AF T 0.0000 Set AFC to power detect threshold to 0.000
Valid range is 0.000 to 1.000

Example:
AFC
AFC auto operation mode Off
AFC tracking auto hold below 10.00000 dB Eb/N0
Compensated frequency offset -0.004606 MHz
Detected frequency offset -0.004718 MHz
Duty cycle 0.08 %
Auto AFC bandwidth is enabled
AFC coefficient 0.03573 seconds
AFC limit 0.50000 MHz
AFC power threshold 0.000

4.9.1.4 Automatic Gain Control - AGC

The Automatic Gain Control command reports and sets a variety of AGC parameters. Additional AGC commands are described in separate subsections 4.9.1.4.1 through 4.9.1.4.7.

AGC [-V] - Shows advanced AGC status
AGC [<e>] - Sets the AGC enable to <e>
where: <e> - Enable
0 - Disabled
1 - Enabled

Example:
AGC (shows total actual power attenuation readings)
 AGC control enabled
 AGC control mode RF
 AGC automatic mode select enabled
 AGC zero mode Manual
 AGC zeroed at -60.36 dBm (60.38 dB attenuation)
 AGC auto zero hold threshold 0.000 dB SNR
 AGC auto raising zero time constant 0.250 seconds
 AGC auto lowering zero time constant 0.250 seconds
 AGC loop total attenuation 60.062 dB
 Bulk attenuator AGC control enabled, switched out CMFM$agc

4.9.1.4.1 Automatic Gain Control Bulk Attenuation - AGC BA

The **AGC BA** command sets the bulk attenuation parameters. The bulk attenuator has three modes In, Out, and Auto. Setting the bulk attenuator to In or Out removes the bulk attenuator from AGC control and forces it In or Out, respectively. Setting it to Auto allows the AGC mode to control it.

There are no hard value limits for the switch in/out threshold at input power due to variances in other parameters such as gain, calibration, and temperature. It will clip to a minimum or maximum value and report that setting.

The bulk attenuation switch out threshold is forced to match the switch in threshold when the AGC is in IF mode. This is to prevent the AGC from attempting to switch the bulk attenuator while using a path that doesn't have a bulk attenuator.

AGC [BA [<e>|V <a>|D <t>|I|O <*> [A]]]] - AGC bulk attenuation settings

 <e> - Sets bulk attenuation control enable to <e>

 where: <e> - Enable
0 - Disabled, switched out
I - Disabled, switched in

A - AGC control enabled

V <a> - Attenuation value to <a>, 0.0000 to 511.9375 dB

D <t> - Switch out threshold delta attenuation <t>, -255.5 to -0.0 dB

I|O <t> - Switch In|Out threshold at input power <t>, in dBm

I|O <t> A - Switch In|Out threshold at attenuation <t>, 0.0 to 255.5 dB

Examples:
AGC BA V 17.000 Set attenuation value to 17.000 dB
Valid range 0.0000 to 511.9375 dB

AGC BA D 33.3 Set switch out threshold delta attenuation to -33.3 dB
Valid range -255.5 to -0.0 dB

AGC BA I x Set switch in threshold at input power to x dBm
AGC BA O x Set switch out threshold at input power to x dBm

4.9.1.4.2 Automatic Gain Control Data Settings - AGC DATA

The AGC DATA command is used to set the AGC table attenuation value for a specific attenuator along with an attenuation or data operation value. Parameter values are explained below.

AGC DATA [<p> <a> = <v>|<o>] - AGC data settings

<p> <a> = <v> - Set AGC table attenuation <p>, attenuator <a> to attenuation <v> dB

where:

<p> - 0.0 to 255.5 dB

<a> - Attenuator A, B, C, D, E

<v> - Attenuation 0.0 to 31.5 dB or 'MIN' or 'MAX'

<o> - Data operation

LOAD - Load data

ERASE - Erase data

SAVE - Save data

Example:
AGC DATA 2.2 E MIN Set AGC table attenuation to 2.2 dB for attenuator E with attenuation of minimum

4.9.1.4.3 Automatic Gain Control Mode - AGC M

The AGC M command sets the automatic gain control loop mode.

AGC [M <m>] - Sets the AGC loop mode to <m>

where: <m> - AGC control mode
Setting the AGC Mode to Auto automatically sets the AGC mode to RF/IF based on IF input path (which is based on the receiver frequency).

Setting the AGC Mode to RF forces control of the RF attenuators and (if the bulk attenuator is set to Auto) the bulk attenuator under AGC control.

Setting the AGC mode to IF forces control of the IF attenuators under AGC control and disables AGC control of the bulk attenuator. This also forces AGC Zero to Auto because when playing back recorded signals, such as demod/playback-demod, the noise floor changes as the AGC in the original recording holds the signal power steady and allows the noise floor to move. The dynamic range of the AGC closely matches the dynamic range of the auto zero.

Examples:
AGC M A Automatically select mode based on source
AGC M R Set AGC control mode to use RF attenuators
AGC M I Set AGC control mode to use IF attenuators

4.9.1.4.4 Automatic Gain Control Loop Parameter - AGC L
The AGC L command sets AGC loop parameters.

AGC [L {P <t>|S <t>|A <t>|D <d>|C <t>|T <d>}] - Set AGC loop parameter

P <t> - Sets period to <t>, 0.000 to 5.464 us
S <t> - Sets sample time to <t>, 0.000 to 2.732 us
A <t> - Sets averaging sample time to <t>, 0.002 to 2100.897 ms
D <d> - Sets deadband to <d>, 0.0000 to 15.9375 dB
C <t> - Sets time constant to <t>, 0.100 to 1000.000 ms
T <d> - Sets power target to <d>, -100.0 to 13.0 dBm

Examples:
AGC L P 0.567 Set AGC loop period to 0.567 µs
 Valid range is 0.000 to 5.464 µs
AGC L S 1.987 Set AGC sample time to 0.567 µs
 Valid range is 0.000 to 2.732 us
AGC L A 42.000 Set AGC averaging sample time to 42.000 ms
 Valid range is 0.002 to 2100.897 ms
AGC L D 0.0010 Set AGC deadband to 0.0010 dB
 Valid range is 0.0000 to 15.9375 dB
AGC L C 25.000 Set AGC time constant to 25.000 ms
 Valid range is 0.100 to 1000.000 ms
AGC L T -70.0 Set AGC power target to -70.0
Valid range is -100.0 to 13.0 dBm

4.9.1.4.5 Automatic Gain Control Attenuator Look Up Table - AGC LUT
The AGC LUT command displays or rebuilds the attenuator look up table.

AGC LUT [<p>|R] - AGC attenuator Look Up Table
 <p> - Show AGC LUT <p> attenuation
 R - Rebuild AGC LUT

Examples:
AGC LUT 111.5 Display AGC look up table 111.5 attenuation
Valid range is 0.0 to 255.5 dB
AGC LUT R Rebuild AGC look up table

4.9.1.4.6 Automatic Gain Control Auto Zero - AGC AZ
The AGC AZ command enables or disables AGC auto zero and sets hold threshold or time constants.

AGC [AZ [H <t>|T <c>]]
 H <t> - Sets the AGC DSP auto zero hold threshold to <t>, -30.000 to 100.000 dB SNR
 TR <c> - Sets the AGC DSP auto zero raising time constant to <c>, 0.050 to 100.000 seconds
 TL <c> - Sets the AGC DSP auto zero lowering time constant to <c>, 0.050 to 100.000 seconds

Examples:
AGC AZ 0 Disable AGC auto zero
AGC AZ 1 Enable AGC auto zero
AGC AZ H 20.000 Set AGC DSP auto zero hold threshold to 20.000 dB
Valid range -30.000 dB to 100.000 dB
AGC AZ T 0.100 Set AGC DSP auto zero time constant to 0.100 seconds
Valid range 0.050 seconds to 100.000 seconds

4.9.1.4.7 Automatic Gain Control Zero - AGC Z
The AGC Z command sets the AGC Zero operating mode and the value at which zero can be set.

AGC [Z |M <m>]] - Sets the AGC zero mode to <m>
 where: <m> - AGC zero mode
 A - Auto: Automatically set AGC zero level
 M - Manual: Manually set AGC zero level, reset on frequency or IF bandwidth change, reset on power cycle
 H - Hold: Manually set AGC zero level, NO reset on frequency or IF bandwidth change, reset on power cycle
S - Hold and Save: Manually set AGC zero level, NO reset on frequency or IF bandwidth change, NO reset on power cycle

The AGC Zero mode (manual, hold, or hold and save) remains set if a waveform mode changes.

AGC \[Z \{<p|Z|R\}\]

- <p> - Sets the AGC output zero to <p> in dBm
- Z - Sets the AGC output zero to current
- R - Resets the AGC output zero to nominal

Examples:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC Z A</td>
<td>Automatically set AGC zero level</td>
</tr>
<tr>
<td>AGC Z M m</td>
<td>Manually set AGC zero level, reset on frequency, or IF bandwidth change; Reset on power cycle</td>
</tr>
<tr>
<td>AGC Z H</td>
<td>Manually set AGC zero level, NO reset on frequency or IF bandwidth change; Reset on power cycle</td>
</tr>
<tr>
<td>AGC Z S</td>
<td>Manually set AGC zero level, NO reset on frequency or IF bandwidth change; NO reset on power cycle</td>
</tr>
<tr>
<td>AGC Z 2</td>
<td>Set AGC output zero to 2 dBm</td>
</tr>
<tr>
<td>AGC Z R</td>
<td>Reset AGC output zero to nominal</td>
</tr>
<tr>
<td>AGC Z Z</td>
<td>Set AGC output zero to current</td>
</tr>
</tbody>
</table>

4.9.1.5 High Speed Output Mixer Settings - AHM

The AHM command displays and controls high speed (video) output mixer settings.

AHM \[<f>|<e> \{<e>\}\] - Sets high speed (video) mixer parameters

- <f> - Sets mixer frequency for ALL channels to <f>, -46.6667 to 46.6667 MHz
- <c> <e> - Sets channel <c> mixer enable to <e>

where:

- <c> - Channel to set enable
 - A - Channel DAC A
 - B - Channel DAC B
 - C - Channel DAC C
 - D - Channel DAC D
- <e> - Enable
 - 0 - Disabled
 - 1 - Enabled

Examples:
AHM

 high speed (video) mixer at 0.0000 MHz
 Channel DAC A mixer disabled
 Channel DAC B mixer disabled
 Channel DAC C mixer disabled
 Channel DAC D mixer disabled

AHM x Sets mixer frequency for all channels in MHz
 Valid range is -46.6667 to 46.6667 MHz

AHM c x Sets a specific channel (c) mixer to enabled or disabled
 Valid channel mixer values are A, B, C, or D

For example: AHM B 1 sets channel DAC B to Enabled
 AHM D 0 sets channel DAC D to Disabled.

4.9.1.6 High/Low Speed Outputs

The receiver has four generic high speed (video) analog outputs, four generic low speed analog outputs, and four
generic clock/data paired digital outputs. While there are signals that are normally found on these outputs, there is
also a list of other sources that can be connected.

A receiver channel is conceptually divided into two basic parts. One is the common 'platform' and the other is the
'demodulator'. The 'platform' is common to all telemetry modulations schemes. The demodulator is specific to the
telemetry modulations scheme.

Some commands operate at the platform level, some at the demodulator level, and some at specific configurations of
the demodulator. This is why the Help displays in this manner:

System Commands

 H ? for help on help
 ACU Antenna control unit ADC ADC register
 UP Unit Parameters VE Version

Demodulator/Receiver Commands

 AEQ Adaptive equalizer DLS Data path lock status

PCMFM Commands

 FM FM demodulator MI Modulation index scale

Some of these sources are part of the 'platform' and some of these sources are specific to the demodulator in use.

The commands AHO, ALO, DDO are the source control commands for the platform.

DAHO, DALO, DDHO, and DDLO are the source control commands for the demod. These commands control
source, (for analog outputs, scale, offset,) and polarity.
4.9.1.6.1 Analog High Speed Output - AHO

The AHO command displays and controls the high speed (video) output settings.

Parameter values are explained below.

AHO [<c> [<s>|<p>|S <s>|O <o>] |E <e>]

where:

<c> is the channel to set; Valid entries are:

- A - Channel DAC A
- B - Channel DAC B
- C - Channel DAC C
- D - Channel DAC D

<s> sets the channel source to one of the options below (if desired):

- IF0 - Physical channel 0 IF input
- IF1 - Physical channel 1 IF input
- P0I - Physical channel 0 downconverted baseband I only
- P0Q - Physical channel 0 downconverted baseband Q only
- P0T - Physical channel 0 tape output source (needs mixer)
- P1I - Physical channel 1 downconverted baseband I only
- P1Q - Physical channel 1 downconverted baseband Q only
- P1T - Physical channel 1 tape output source (needs mixer)
- CMBI - Combiner baseband I only
- CMBQ - Combiner baseband Q only
- CMBT - Combiner tape output source (needs mixer)
- DP0 - Data path high-speed signal 0
- DP1 - Data path high-speed signal 1
- DP2 - Data path high-speed signal 2
- DP3 - Data path high-speed signal 3
F0 - Fixed value 0
F1 - Fixed value 1

OR
<p> sets the channel polarity to one of the values below:
- {0|+} - Active high (normal)
- {1|-} - Active low (inverted)

OR
S <s> sets the channel scale to a value between -128.0000 and 127.9961

OR
O <o> sets the channel offset to a value between -1.0000 and 0.9995

E <e> sets the channel enable to enabled or disabled
- 0 - Disabled
- 1 - Enabled

Example:
AHO Displays current high speed (video) output status settings (enabled/disabled and output frequency)
 high speed (video) Channel DAC A
 Source Data path high-speed signal 0
 Scale - 1.0000
 Offset - 0.0000
 Polarity - High (+)
 high speed (video) Channel DAC B
 Source Data path high-speed signal 1
 Scale - 1.0000
 Offset - 0.0000
 Polarity - High (+)
 high speed (video) Channel DAC C
 Source Physical channel 0 downconverted baseband I only
 Scale - 1.0000
 Offset - 0.0000
 Polarity - High (+)
 high speed (video) Channel DAC D
 Source Physical channel 0 downconverted baseband Q only
 Scale - 1.0000
Offset - 0.0000
Polarity - High (+)
70 MHz modulator disabled

AHO B P1T Sets the channel to Channel DAC B with Physical channel 1 tape output source;
(Needs mixer)
AHO D S -42.0000 Sets the channel to Channel DAC D with a channel scale of -42.0000
AHO C O 0.1234 Sets the channel to Channel DAC C with a channel offset of 0.1234
AHO A E 1 Sets the channel to Channel DAC A and enables the channel

AHO M - Sets the 70 MHz modulator output to enable or disable
Examples:
AHO M 0 Disabled
AHO M 1 Enabled

AHO -V ? - Shows extended Help for the AHO command

4.9.1.6.2 Analog Low Speed Output - ALO
The ALO command displays and controls the low speed (ACU) output settings.
Parameter values are explained below.

ALO [<c> [<s>|<p>|S <s>|O <o>]|E <e>]
where:
<c> is the channel to set; Valid entries are:
- A - Channel A (AM)
- B - Channel B (Aux Analog A Out)
- C - Channel C (AGC)
- D - Channel D (Aux Analog B Out)
<s> sets the channel source to one of the options below (if desired):
- AM - Demodulated AM
- AGC - AGC output
- CMBW - Combiner weight
- DP0 - Data path low-speed source 0
- DP1 - Data path low-speed source 1
- DP2 - Data path low-speed source 2
- DP3 - Data path low-speed source 3
- DQM - DQM output
- DS0 - DSP SNR 0
- DS1 - DSP SNR 1
- EA0 - External AGC 0
- EA1 - External AGC 1
- F0 - Fixed value 0
- F1 - Fixed value 1
- IA0 - Internal AGC 0
- IA1 - Internal AGC 1

OR

<p> sets the channel polarity to one of the values below:
- {0|+} - Active high (normal)
- {1|-} - Active low (inverted)

OR

S <s> sets the channel scale to a value between -128.0000 and 127.9961

OR

O <o> sets the channel offset to a value between -1.0000 and 0.9995

E <e> sets the channel enable to enabled or disabled
- 0 - Disabled
- 1 - Enabled

Examples:
ALO C AGC Sets the channel to Channel C (AGC) with AGC output
ALO D 1 Sets the channel to Channel D (Aux Analog B Out) with polarity active low (inverted)
ALO A S 98.6543 Sets the channel to Channel A (Demodulated AM) with channel scale set to 98.6543
ALO B E 0 Sets the channel to Channel B and disables the channel

ALO -V ? - Shows extended Help for the AHO command

Example:
ALO Displays current low speed (ACU) output status settings (enabled/disabled and output frequency)
 low speed (ACU) Channel A (AM)
 Source Demodulated AM
3rd Generation Rack-Mount RDMS™

Scale - 1.0000
Offset - 0.0000
Polarity - High (+)

low speed (ACU) Channel B (Aux Analog A Out)
Source Fixed value 0
Scale - 1.0000
Offset - 0.0000
Polarity - High (+)

low speed (ACU) Channel C (AGC)
Source AGC output
Scale - 1.0000
Offset - 0.0000
Polarity - High (+)

low speed (ACU) Channel D (Aux Analog B Out)
Source Fixed value 0
Scale - 1.0000
Offset - 0.0000
Polarity - High (+)

4.9.1.6.3 Digital Data Outputs - DDO
The Digital Data Outputs command is a source control command for the platform. It controls source for digital data outputs, scale, offset, and polarity.

Example:
DDO

Channel A Clock = Clock A active High (+)
Channel A Data = Data A active High (+)
Channel B Clock = Clock B active High (+)
Channel B Data = Data B active High (+)
Channel C Clock = Clock A active High (+)
Channel C Data = Data A active High (+)
Channel D Clock = Clock B active High (+)
Channel D Data = Data B active High (+)

4.9.1.6.4 Demod Analog High Speed Outputs - DAHO
DAHO is a source control command for the demodulator. It controls source for high speed analog outputs, scale, offset, and polarity.

Example:
DAHO
datapath high speed (video) Datapath output 0
Source Demodulated FM
datapath high speed (video) Datapath output 1
4.9.1.6.5 Demod Analog Low Speed Outputs - DALO
DALO is a source control command for the demodulator. It controls source for low speed analog outputs, scale, offset, and polarity.

Example:
DALO
datapath low speed (ACU) Datapath output 0
Source Fixed value 0
datapath low speed (ACU) Datapath output 1
Source Fixed value 0
datapath low speed (ACU) Datapath output 2
Source Fixed value 0
datapath low speed (ACU) Datapath output 3
Source Fixed value 0

4.9.1.6.6 Datapath Digital High Speed Data Output - DDHO
DDHO is a source control command for the demodulator. It controls source for high speed digital data outputs, scale, offset, and polarity.

DDHO [<c> <s>] - Sets channel <c> to source <s>
where:

<c> - Output channel
0 - Channel 0
1 - Channel 1
2 - Channel 2
3 - Channel 3
4 - Channel 4
5 - Channel 5
6 - Channel 6
7 - Channel 7

<s> - Signal source
F0 - Fixed 0
F1 - Fixed 1
SC - Symbol Clock

Example:
DDHO
Channel 0 = Symbol Clock
Channel 1 = Fixed 0
Channel 2 = Fixed 0
Channel 3 = Fixed 0
Channel 4 = Fixed 0
Channel 5 = Fixed 0
Channel 6 = Fixed 0
Channel 7 = Fixed 0

4.9.1.6.7 Datapath Digital Low Speed Data Output - DDLO
DDLO is a source control command for the demodulator. It controls source for low speed digital data outputs, scale, offset, and polarity.

DDLO [<c> <s>] - Sets channel <c> to source <s>

where:

<c> - Output channel
 0 - Channel 0
 1 - Channel 1
 2 - Channel 2
 3 - Channel 3
 4 - Channel 4
 5 - Channel 5
 6 - Channel 6
 7 - Channel 7

<s> - Signal source
 F0 - Fixed 0
 F1 - Fixed 1

Example:
DDLO
Channel 0 = Fixed 0
Channel 1 = Fixed 0
Channel 2 = Fixed 0
Channel 3 = Fixed 0
Channel 4 = Fixed 0
Channel 5 = Fixed 0
Channel 6 = Fixed 0
Channel 7 = Fixed 0

4.9.1.6.8 **Digital High Speed Input - DHI**

DHI displays and controls high speed digital input settings.

DHI [<c> <s>] - Sets channel <c> to source <s>

where:

- <c> - Input channel
 - NC - Not Connected
- <s> - Signal source
 - F0 - Fixed 0
 - F1 - Fixed 1
 - GC - Generator Clock
 - GD - Generator Data
 - TH5 - Top Hat 5
 - TH7 - Top Hat 7

DHI [<s> <p>] - Sets source <s> polarity to <p>

where:

- <s> - Input source
 - TH5 - Top Hat 5
 - TH7 - Top Hat 7
- <p> - Input polarity
 - {0|+} - Active high (normal)
 - {1|-} - Active low (inverted)

4.9.1.6.9 **Digital Low Speed Input - DLI**

DLI displays and controls low speed digital input settings.

DLI [<c> <s>] - Sets channel <c> to source <s>

where:

- <c> - Input channel
UR0 - UART Rx 0
UR1 - UART Rx 1
<s> - Signal source
F0 - Fixed 0
F1 - Fixed 1
URX - UART Rx
TH8 - Top Hat 8
TH9 - Top Hat 9
TH10 - Top Hat 10
TH11 - Top Hat 11
TH12 - Top Hat 12
TH14 - Top Hat 14
TH18 - Top Hat 18
TH20 - Top Hat 20
TH21 - Top Hat 21

DLI [<s> <p>] - Sets source <s> polarity to <p>

where:
<s> - Input source
URX - UART Rx
TH8 - Top Hat 8
TH9 - Top Hat 9
TH10 - Top Hat 10
TH11 - Top Hat 11
TH12 - Top Hat 12
TH14 - Top Hat 14
TH18 - Top Hat 18
TH20 - Top Hat 20
TH21 - Top Hat 21
<p> - Input polarity
4.9.1.7 Low Speed Mixer Control - ALM

The ALM command displays and controls low speed (ACU) output mixer settings.

ALM [<f>|<c> [<e>]] - Sets low speed (ACU) mixer parameters

- <f> - Sets mixer frequency for ALL channels to <f>, -100.0000 to 100.0000 kHz
- <c> <e> - Sets channel <c> mixer enable to <e>

where:

- <c> - Channel to set enable
 - A - Channel A (AM)
 - B - Channel B (Aux Analog A Out)
 - C - Channel C (AGC)
 - D - Channel D (Aux Analog B Out)
- <e> - Enable
 - 0 - Disabled
 - 1 - Enabled

Examples:
ALM x Sets mixer frequency for all channels in MHz
Valid range is -46.6667 to 46.6667 MHz
ALM c x Sets a specific channel (c) mixer to enabled or disabled
Valid channel mixer values are A, B, C, or D
For example: ALM B 1 sets channel DAC B to Enabled
ALM D 0 sets channel DAC D to Disabled.

ALM
low speed (ACU) mixer at 0.0000 kHz
Channel A (AM) mixer disabled
Channel B (Aux Analog A Out) mixer disabled
Channel C (AGC) mixer disabled
Channel D (Aux Analog B Out) mixer disabled

4.9.1.8 Lock Status Command - AL

The Lock Status command reports the system lock status.

Example:
System Lock is active

4.9.1.9 Bit Rate - BR
The Bit Rate command sets or reports the baseband bit rate. The value reported by this command is shown on the front panel Advanced Menu, Sync Bit Rate option and on the Browser Interface in the Advanced Settings, Sync Bit Rate field.

BR [<r>|M|SM]
 <r> - Set bit rate to <r>, 0.0240 to 23.0000 Mbps
 M - Show measured bit rate
 SM - Set bit rate to measured bit rate

BR M - Show the current measured bit rate
 BR M Display measured bit rate in Mbps

BR SM - Set the bit rate to the measured bit rate
 BR SM Set the bit rate to the measured bit rate in Mbps

Examples:
 BR Report the bit rate setting
 Bit rate: 1.000000 Mb/s

 BR 5 Set bit rate to 5 Mbps
 BR 0.6 Set bit rate to 600 Kbps
 Valid range is 0.0080 to 23.0000 Mbps

4.9.1.10 Combiner Control - CMB
The Combiner Control command displays and controls combiner settings.

CMB [<e>|M <m>|W <w>]|
 <e> - Sets combiner enable to <e>
 where: <e> - Enable
 0 - Disabled
 1 - Enabled

 M <m> - Sets combiner operation mode to <m>
 where: <m> - Operation Mode
 M - Maximal Ratio
 B - Best Source

 W <w> - Sets combiner weighting source to <w>
where: <s> - Weighting Source
SNR - Ultra-Dynamic - Signal to Noise Ratio
DQM - Ultra-Precision - Data Quality Metric

CMB [A <e>|H <t>|B]
A <e> - Sets combiner time aligner enable to <e>
where: <e> - Enable
0 - Disabled
1 - Enabled
A H <t> - Sets aligner hold below Eb/N0 <t>, -20.000 to 30.000 dB or -100.000 is off
A B - Sets aligner with timing offset above , 0.010 to 1.000 bits

CMB [BSS <h>] - Sets combiner BSS mode hysteresis <h>, 0.000 to 48.131

CMB [B <s>|MB |L <f>>|Z <v>]
B <s> - Sets combiner bit rate to bandwidth scale to <s>, 0.001000 to 10.000000
MB - Sets combiner maximum bandwidth to , 0.000001 to 10.000000
L <f> - Sets combiner frequency error limit to <f>, .00000002173 to 23.3333 of bit rate
Z <v> - Sets combiner loop zeta to <v>, 0.001 to 10.000

CMB [BI <t>|BO <t>] - Sets combiner maximal ratio to BSS in/out thresholds
BI <t> - Sets combiner maximal ratio mode to BSS hold mode threshold to <t>
BO <t> - Sets combiner maximum BSS hold mode to ratio mode threshold to <t>

Examples:
CMB BI x Set combiner BSS in to value
CMB BO x Set combiner BSS out to value
Value range -24.065 to 24.065

CMB HI/HO - Sets combiner hold in/out thresholds

Examples:
CMB HI x Set combiner hold in to value
CMB HO x Set combiner hold out to value
Value range -24.065 to 24.065

Examples:

CMB
System configured for Physical input 0
Combiner frequency error -0.024177 MHz
Combiner error limit 0.06250 of bitrate
Combiner zeta 1.000
Hold in threshold 5.936 dB
Hold out threshold 0.000 dB
BSS in threshold 11.761 dB
BSS out threshold 8.936 dB
Aligner off
Average aligner time shift 0.00 ns (0.000 bits)
Aligner hold threshold 0.000 dB
Aligner max offset 0.333 bits

CMB 0 Set combiner Disabled
CMB 1 Set combiner Enabled

4.9.1.11 Clock Polarity - CP
The Clock Polarity command displays and controls clock output polarity.

CP [<p>] - Sets clock component output polarity

<p> - Set clock polarity to <p>

where:

<p> - Polarity

{0|+} - Active high (normal)

{1|-} - Active low (inverted)

Examples:

CP Report the clock source state
Clock polarity active High (+)

CP 0 Set clock inversion Off
CP 1 Set clock inversion On

4.9.1.12 Downconverting Antenna - DA
The Downconverting Antenna command displays and controls receiver C band to P band downconverting antenna
DA [<e>] - Sets the C band downconverting antenna enable to <e>

where: <e> - Enable

0 - Disabled (C band tunes directly)
1 - Enabled (C band tunes to downconverted P band)

Examples:
DA
Downconverting antenna is disabled

DA 0 Set downconvert antenna state to Off (Disabled); C band tunes directly
DA 1 Set downconvert antenna state to On (Enabled); C band tunes to downconverted P band

**Downconverting antenna control only available when using a 5-band downconverter AND P and C bands are enabled.

4.9.1.13 Differential Decoding - DD
The Differential Decoding command displays and controls differential decoder settings (SOQPSK mode only). Differential Decoding for DPM defaults to Disabled (Off).

DD [<e>] - Sets the differential decoder enable to <e>

where: <e> - Enable

0 - Disabled
1 - Enabled

Example:
DD
differential decoder disabled

4.9.1.14 Digital Output Muting - DOM
The Digital Output Muting command displays and controls lock detect controlled output settings.

DOM [<e>|T <|T|C <|C|D <|D>]

<e> - Sets the output muting enable to <e>

where: <e> - Enable

0 - Disabled
1 - Enabled

T <| - Sets the output muting unlock timeout to <|, 0 to 46016 ms
C <| - Sets clock output muting on unlock to <|

where: <| - Enable
3rd Generation Rack-Mount RDMS™

0 - Disabled
1 - Enabled

D <e> - Sets data output muting on unlock to <e>
where: <e> - Enable
0 - Disabled
1 - Enabled

Example:
DOM
Output muting timeout 1000
Output muting clock enable 0
Output muting data enable 0

4.9.1.15 Data Polarity - DP
The DP command displays and controls data output polarity.

DP [<p>] - Sets data component output polarity
where: <p> - Set data polarity to <p>

where:
<p> - Polarity
{0|+} - Active high (normal)
{1|-} - Active low (inverted)

Examples:
DP
Data polarity active High (+)
DP 0 Set data polarity to NOT inverted (Off)
DP 1 Set data polarity to inverted (On)

4.9.1.16 Data Quality Encapsulation - DQE
The Data Quality Encapsulation command displays and controls several DQE parameters.

DQE [<e>|B |M <e> [<r>]]
where: [<e>] - Enables data quality encapsulation
where:
<e> - Enable
0 - Disabled
1 - Enabled
3rd Generation Rack-Mount RDMS™

[B] - Sets data quality encapsulation block size to , 1 to 16384

[M <e> [<r>]] - Sets data quality encapsulation tracking display enable to <e> at rate <r>

where:

<e> - Enable

0 - Disabled
1 - Enabled

<r> - Display rate <r>, 1 to 60000 ms

DQE B - Sets data quality encapsulation block size

Example:
DQE B 42 Set data quality encapsulation block size to 42
Valid range is 1 to 16384

DQE M - Sets data quality encapsulation tracking display

Example:
DQE M 0 Disable data quality encapsulation tracking display
DQE M 1 8400 Enable data quality encapsulation tracking display and set display rate to 8400 ms
Valid range is 1 to 60000 ms

Examples:
DQE
Data quality encapsulation disabled
Data quality encapsulation block size 4096 bytes
Instant DQM BEP 1.000e-12
Average DQM BEP 1.000e-12
DQE 0 Disable data quality encapsulation
DQE 1 Enable data quality encapsulation

4.9.1.17 Derandomizer State - DR
The DR command displays and controls derandomizer settings.

DR <e> - Sets the derandomizer enable to <e>

where: <e> - Enable

0 - Disabled
1 - Enabled

Examples:
DR
derandomizer disabled
DR 0 Set the derandomizer Off (Disabled)
DR 1 Set the derandomizer On (Enabled)

4.9.1.18 Digital Status Output - DSO

There are two generic discrete digital outputs that are normally lock status and sync detect (used for synchronization time testing) but also have other potential sources. The Digital Status Output command controls the source, polarity, and override states.

DSO [<c> [<s>|<p>|M <f>]]
 <c> <s> - Sets channel <c> source to <s>
 where:

 <c> - Channel
 L - Lock detect output
 S - Sync detect output
 <s> - Signal source
 LD - Lock detect
 SD - Sync detect
 PL - PCM frame lock
 PS - PCM sub-frame valid

 <c> <p> - Sets channel <c> polarity to <p>
 where: <p> - Output polarity
 {0|+} - Active high (normal)
 {1|-} - Active low (inverted)

 M <m> - Sets channel <c> output mode to <m>
 where: <m> - Output mode
 0 - Allows normal output
 1 - Forces output to 1 (active)
 -1 - Forces output to 0 (inactive)

Example:
DSO
Lock detect output = Lock detect active High (+) normal operation
Sync detect output = Sync detect active High (+) normal operation
4.9.1.19 Forward Error Correction - FEC

Forward Error Correction requires the K7 option in the serial number.

The FEC command displays and controls Forward Error Correction settings.

FEC [M <m>|S <m> <s>|A <t>|IS <i>]

- **M <m>** - Sets FEC mode to <m>

 where: <m> - Mode

 N - None

 L - LDPC Block decode

- **S <m> <s>** - Sets soft decision scale for mode <m> to <s>

 where: <m> - Mode

 N - None

 L - LDPC Block decode

 where: <s> is a value between -32.000 and 31.984

- **A <t>** - Sets block decoding ASM threshold to <t>

 where: <t> is a value between 0 and 65535

- **IS <s>** - Sets block decoding half iteration scale to <s>

 where: <s> is a value between 0.100 to 1.000

FEC M - Sets the FEC mode for all enabled modes

Examples:

FEC M N Set FEC mode to None
FEC M V Set FEC mode to Viterbi K=7 Rate=1/2

Examples:

FEC

 FEC mode None

4.9.1.20 Force Lock Indication - FL

The FL command displays and controls lock forcing settings.

FL [<l>] - Sets lock state to <l>

where: <l> - Lock state

 0 - Normal operation

 1 - Forced active
-1 - Forced inactive

Examples:
FL
 Lock is normal
 System lock is active
 Datapath lock is active
FL 0 Force lock to Normal
FL 1 Force lock to On
FL -1 Force lock to Off

4.9.1.21 FM Demodulator Settings - FM
The FM command displays and controls FM demodulator settings.

Parameter values are explained below.

 FM [<p>|S <s>|B |N <e>]

where:

<p> sets the channel polarity to one of the values below:

- {0|+} - Active high (normal)
- {1|-} - Active low (inverted)

OR
S <s> sets the FM output scale to a value between -128.0 and 128.0

OR
B sets the FM detector bandwidth to a value between 0.02 MHz and 46.00 MHz

 The FM detector bandwidth cannot be less than current bit rate bandwidth (14.00 MHz). Refer to section
 4.9.1.21.1 for additional details about the FM B x command.

OR
N <e> sets the NTSC Video deemphasis filter enable to enabled or disabled

 0 - Disabled
 1 - Enabled

Example:
FM
 FM output polarity +
 FM demodulator bandwidth 1.4 MHz
 FM output scale 1.0
 Video de-emphasis filter Off
4.9.1.21.1 FM Video Bandwidth Control - FM B

The FM B x command adjusts the I/Q (video) output bandwidth with PCM/FM in mind. Setting the FM (video) bandwidth wider than it would normally be set by the bit rate (this would be 1.1 to 1.4 wider than the bit rate) configures the system to allow a higher bandwidth on the output while allowing normal PCM/FM demodulation on the lower frequency PCM/FM.

- The video bandwidth can never be set narrower than the required bandwidth for the specified bit rate.
- The IF filter selection, if set to FS A, is wide enough to accommodate the wider FM (video) bandwidth.
- This configuration only operates properly in Phase Noise Compensation mode (PN 1).
- Modulation Index tracking must be turned OFF as it is incompatible with modulations like PCM/FM/FM.
- The video bandwidth must be set AFTER the bit rate has been set.
- Setting the bit rate sets the video bandwidth compatible with the bit rate.

4.9.1.22 Front Panel Display Status - FPD

The Front Panel Display status command displays the data that is sent to the rack used to keep the front panel displays updated.

`FPD [<e>]`

- `<e>` - Sets front panel data update enable to `<e>`
 - where: `<e>` - Enable
 - 0 - Disabled
 - 1 - Enabled

Example:

```
FPD
Front panel data update enabled at 50 ms update rate
Version 4
Signal strength -60.547 dB
Signal quality 27.235 dB Eb/N0
System lock active
AGC is zeroed
AGC zeroed at -60.109 dBm
Gain calibration is valid
Demod temperature 43 C
DQE BEP 0.999985 (1.000e-12)
Privilege dictionary is invalid
PCMFM
  Version 1
  MI scaling mode acquire
  MI scaling state triggered
  MI scaling acquire trigger 27.573 Eb/N0 dBm
  Modulation H 0.701
```
4.9.1.23 Frequency - FR
The FR command displays and controls receiver frequency.

FR [<f>] - Sets receiver to <f> in MHz

where: <f> - Receiver frequency

- P band: 200.0 to 1150.0 MHz
- CT band: 1150.0 to 2500.0 MHz
- C band: 4400.0 to 5250.0 MHz
- 70 MHz band: 70.0 to 70.0 MHz
- Playback band: 0.1 to 20.0 MHz

Examples:
FR
Rx frequency 2200.500000 MHz
FR 2200.5 Set modulation to 2200.5 MHz

4.9.1.24 Advanced Help Command - HA

HA [-v] - Displays extended help for each command, if available

HA [<s>] - Searches help for <s> and displays it

Help on Help...

- Commands are tiered according to their degree of complexity/frequency of use into basic, advanced, or extended
- Basic command help can be accessed by 'H' or '?'
- Detailed help on any command is accessed by following the command with '?' such as <command> ?

Help/Command conventions:

- All commands are entered followed by 0 or more parameters.
- Each parameter is separated by one or more spaces.
- Each parameter may be either a value parameter to the command or a command control parameter that specifies the operation of the command.

<command> <parameter 1> <parameter 2> ...

- In general, a command with no parameters will display the commands associated status.

Detailed help displays follow a common convention:

- Upper case parameters indicate command control parameters that must be entered as specified:

 BR M - BR command followed by the command control parameter 'M'
• Angle brackets ‘<’ and ‘>’ indicate value parameters. A value parameter is a variable parameter to a command. A value parameter may be either a numeric or text value, or an additional command control parameter:

 FR <f> - FR command followed by the value parameter <f>

• Square brackets ‘[’ and ‘]’ indicate optional parameters:

 MO [<m>] - MO command followed by optional value parameter <m>

• Vertical bars ‘|’ indicate a choice of parameters:

 AGC [M <m>|<e>]

 AGC command followed by optional M control parameter followed by the <m> value parameter OR AGC command followed by just the <e> value parameter.

• Braces ‘{’ and ‘}’ indicate a required value:

 DDT [P {<s>|<p>}]

 DDT command followed by optional command control parameter 'P'. If the 'P' command control parameter is used it is followed by a required <s> OR <p> value parameter.

A complex example:

 AGC BA [<e>|V <a>]|O <t> [A]]

The AGC command followed by the BA command control parameter, followed by one of:

 <e> value parameter

 OR

 the V command parameter followed by the <a> value parameter

 OR

 the I or O command parameter followed by the <t> value parameter followed by an optional A command parameter

4.9.1.25 IF Filter Control - IF

The IF filter control command displays and controls the filter selections.

IF filters may be set to automatic based on the bit rate or the second IF filter may be set to a value based on a filter index.

IF [A]<s> [F <f>] - Sets IF filter control

 A - Sets IF filter selections to automatic based on bit-rate

 <s> - Sets second IF filter to <s>
where: <s> - Filter index

The IF A command sets the IF filter selections to automatic based on bit rate.

IF x sets the second IF filter to one of the filter index values listed below:

- 0 - 70 kHz
- 1 - 250 kHz
- 2 - 500 kHz
- 3 - 1.0 MHz
- 4 - 1.4 MHz
- 5 - 2.0 MHz
- 6 - 3.0 MHz
- 7 - 4.5 MHz
- 8 - 6.0 MHz
- 9 - 10.0 MHz
- 10 - 14.0 MHz
- 11 - 20.0 MHz
- 12 - 28.0 MHz
- 13 - 40.0 MHz
- 14 - OPEN

IF F x sets the first IF filter to one of the filter index values below:

- 0 - 12.0 MHz
- 1 - bypassed

Examples:

IF Auto IF filter select enabled
First IF filter (0) 12.0 MHz
Second IF filter (5) 2.0 MHz
IF F 0 Sets the first IF filter to 12.0 MHz
IF 9 Sets the second IF filter to 10.0 MHz

4.9.1.26 Modulation Index - MI

The MI command displays and controls modulation index scale settings.

MI [<s>|M <m>|TH <h>|THE <e>|AD <d>|AS <s>|P <e>]

- <s> - Sets modulation index scale to <s>, 0.350 to 8.000, this forces the mode to hold at the specified value
- M <m> - Sets modulation index scale mode to <m>

where: <m> - Mode

- O - Off (sets scale 1.0 for nominal deviation of 0.70)
- H - Hold
- A - Acquire
- T - Tracking

TH <h> - Sets tracking-mode hold below Eb/N0 of <h>, -20.000 to 30.000

THE <e> - Sets tracking-mode hold below Eb/N0 enable to <e>

where: <e> - Enable
0 - Disabled
1 - Enabled
AD <d> - Sets acquire mode minimum delta H to <d>, 0.000 to 8.000
AS <s> - Sets acquire mode settling time to <s>, 20 to 10000 ms with a 10 ms resolution
P <e> - Sets the modulation index scale parameter (mode and H value) persistence to <e>
 where: <e> - Enable
 0 - Disabled
 1 - Enabled

MI [TS {M <i>|T <i>|H <i>}]}
 M <i> - Sets modulation index trellis maximum index to <i>, 0.000 to 8.000
 T <i> - Sets modulation index trellis target index to <i>, 0.000 to 8.000
 H <i> - Sets modulation index trellis hysteresis to <i>, 0.000 to 8.000

Examples:
MI
 Modulation index scaling mode acquire (Triggered at 27.57 Eb/N0)
 Modulation index 0.701, estimated index 0.701
 Tracking mode hold threshold 10.000 Eb/N0
 Tracking mode hold enabled
 Acquire mode delta H 0.005
 Acquire mode settle time 500 ms
 Operation persistence disabled
MI x Sets mod index scale to a value between 0.350 and 8.000 and forces mode to hold at
 specified value
MI O Disable Mod Index Tracking (Set to h=0.7)
MI A Acquire mode enable
MI A D Sets the maximum delta h (indicates a change in h defaults to 0.005)
MI A S Sets the delta h settling time defaults to 500 ms
MI H Hold Mod Index Tracking at current position
MI I Sets Trellis Index
MI T Tracking mode enable
MI T H x Sets the Tracking Hold threshold below Eb/N0 (x)
 Valid range is -20.000 to 30.000

4.9.1.27 Modulation - MO
The MO command displays and controls mode settings.
MO [<m>] - Sets the demodulation mode to <m>

where: <m> - Mode

{0|PCMFM} - Pulse Code Modulation/Frequency Modulation
{1|SOQPSK} - Shaped Offset Quadrature Phase Shift Keying
{2|MhCPM} - Multi-h Continuous Phase Modulation
{3|BPSK} - Bi-Phase Phase Shift Keying
{4|QPSK} - Quadrature Phase Shift Keying
{5|AQPSK} - Asymmetrical Quadrature Phase Shift Keying
{6|AUQPSK} - Asymmetrical/Unbalanced Quadrature Phase Shift Keying
{7|OQPSK} - Offset Quadrature Phase Shift Keying
{8|UQPSK} - Unbalanced Quadrature Phase Shift Keying
{9|DPM} - Digital Phase Modulation
{11|STC} - Space Time Coding
{12|SOQPSK/LDPC} - Shaped Offset Quadrature Phase Shift Keying With LDPC
{13|STC/LDPC} - Space Time Coding With LDPC

Examples:

MO

Mode PCMFM - Pulse Code Modulation/Frequency Modulation
MO 0 Set modulation to PCM/FM
MO 1 Set modulation to SOQPSK-TG
MO 2 Set modulation to Multi-h CPM
MO 3 Set modulation to BPSK
MO 4 Set modulation to QPSK
MO 5 Set modulation to AQPSK
MO 6 Set modulation to AUQPSK
MO 7 Set modulation to OQPSK
MO 8 Set modulation to UQPSK
MO 9 Set modulation to Digital PM (DPM)
MO 10 Set modulation to Analog FM
MO 11 Set modulation to Space Time Coding (STC)
MO 12 Set modulation to SOQPSK/LDPC
MO 13 Set modulation to STC/LDPC
4.9.1.28 Output Clock Measurement - OCM

The Output Clock Measurement command displays measured output clock frequency. Most of the time this is the same as the commanded bit rate but, depending on encoding/decoding and other factors, this may or may not be the commanded bit rate.

OCM - Shows measured clock rate

Example:
OCM

Component A measured datapath rate 0.999998 - commanded 0.999998
Component B measured datapath rate 0.000000 - commanded 0.000000

4.9.1.29 PCM Decoding - PDC

The PCM Decoding command displays and controls PCM digital decoder settings.

PDC [<t>] - Sets the PCM decoding to <t>

where: <t> - Decoding

- NRZL - Non-return-to-zero, level
- NRZM - Non-return-to-zero, mark
- NRZS - Non-return-to-zero, space
- RZ - Return-to-zero
- BIPL - Bi-phase, level
- BIPM - Bi-phase, mark
- BIPS - Bi-phase, space
- DMM - Delay modulation (Miller code), mark
- DMS - Delay modulation (Miller code), space
- M2M - Modified delay modulation (Miller squared code), mark
- M2S - Delay modified modulation (Miller squared code), space

Example:
PDC

PCM decode NRZL - Non-return-to-zero, level

4.9.1.30 Receiver Channel Parameters

Six of the listed commands, PER, PERA, PLD, PRS, PSV, and RFD operate within the following constraints.

There are two forms the receiver channel parameters take. One is the current operating parameter set that controls the operation of the receiver brick and the other is the stored parameter set.
The current operating parameters are volatile in nature in that when the power is removed, the parameters are lost. The stored parameters are saved in FLASH memory in the receiver brick. When the receiver brick is turned on, the stored parameters are loaded into the current operating parameter set.

Parameters in the current operating parameter set can be changed without affecting the stored parameter set. When the receiver brick is powered down, current operating parameters go away and when powered on, the stored parameter set becomes the current operating parameter set.

4.9.1.30.1 Parameters Erase - PER
The Parameters Erase command erases the stored parameter set for the current mode. It has no impact on the current operating parameter set. If the receiver brick is power cycled, the current operating parameter set is set to defaults.

Example:
PER
 Erasing parameter data... ok

4.9.1.30.2 All Parameters Erase - PERA
The Parameters Erase command erases the stored parameter set for all modes. It has no impact on the current operating parameter set. When the receiver brick is power cycled, all operating parameters set are set to defaults.

Example:
PERA
 Erasing parameter data... ok

4.9.1.30.3 Parameter Load - PLD
The Parameter Load command loads the stored parameter set into the current operating parameter set.

Example:
PLD
 Loading parameter data... ok

4.9.1.30.4 Parameter Reset - PRS
The Parameter Reset command resets the current operating parameter set to the defaults. This does not affect the stored parameter set.

Example:
PRS
 Initializing parameter data... ok

4.9.1.30.5 Parameters Save - PSV
The Parameters Save command writes the current operating parameter set into a (previously erased) stored parameter set.

Example:
PSV
 Saving parameter data... ok

4.9.1.30.6 Reset to Factory Defaults - RFD
The Reset to Factory Defaults command erases the stored parameter set for ALL modes then resets the current operating parameter set to the defaults including mode (it changes to the default mode).
Example:
RFD

WARNING: ALL CONFIGURATION PARAMETER DATA IS ABOUT TO BE ERASED!!
THIS CANNOT BE UNDONE!!
Enter "YES" to continue!
Aborted

4.9.1.31 Power Level - PL

The PL command reports or sets the current input power level setting.

PL [<t>|C <m>|H <e>|S <s>|P <p>|M <t>|F <e>]

<t> - Sets power level information tracking display to <t>
where: <t> - Enable
0 - Disabled
1 - Enabled

C <m> - Sets power level control mode to <m>
where: <m> - Mode
F - Fixed scale
A - Automatic leveling

H <e> - Sets automatic leveling hold to <e>
where: <e> - Enable
0 - Disabled
1 - Enabled

S <s> - Sets the fixed scale to <s>, -48.16 to 24.08 dB

P <p> - Sets automatic leveling target to <p>, -32.15 to 16.01 dBm

M <t> - Sets power level measurement to <t>
where: <t> - Type
T - Total power
S - Signal power

F <e> - Sets power filtering to <e>
where: <e> - Enable
0 - Disabled
1 - Enabled
Examples:

PL

<table>
<thead>
<tr>
<th>Input dBm</th>
<th>Atten dB</th>
<th>Signal dBm</th>
<th>Adj dBm</th>
<th>Eb/N0 dB</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.48</td>
<td>59.750</td>
<td>-3.43</td>
<td>13.03</td>
<td>27.30</td>
<td>0</td>
</tr>
</tbody>
</table>

Power leveling automatic
Power leveling active
Power level target power 13.00 dB
Power level scale 0.00 dB
Power level measurement signal only
Power level filtering enabled

PL 0 Set the current power level information tracking display to Off
PL 1 Set the current power level information tracking display to On

PL C A - Sets power level automatic control mode

Examples:

PL C A 0 Set the power level automatic control mode to Software
PL C A 1 Set the power level automatic control mode to Hardware

PL F - Sets the average and adjusted power level filter coefficient

Example:

PL F 5 Set the power level filter coefficient to 5
 Valid range is 1 to 16

PL M - Sets the power level measurement type

Examples:

PL M 0 Set the power level measurement type to Total Power
PL M 1 Set the power level measurement type to Signal Power

PL S - Sets the power level scale value

Example:

PL S 2.517 Set the power level scale value to 2.517
 Valid range is 0.000 to 7.996

4.9.1.32 Phase Noise Compensation - PNC

The PNC command reports or sets the phase noise compensation state.

Examples:

PNC Phase noise compensation off
PNC 0 Set phase noise compensation to Off
PNC 1 Set phase noise compensation to On

4.9.1.33 Query Temperature - QT
The Query Temperature command reports the temperature in degrees Celsius.

Example:
QT
FPGA temperature: 41.0 C (85 C Max)
Demod temperature: 43.0 C (85 C Max)

4.9.1.34 Signal Degradation Information - SDI
The Signal Degradation Information command sets and displays a variety of signal degradation information settings.

SDI [<e>|T <e>|S <s>|P <p>|L <l>|IT <t>|ET <t>]
 <e> - Sets the SDI enable to <e>
 where: <e> - Enable
 0 - Disabled
 1 - Enabled
 T <e> - Sets the SDI tracking display enable to <e>
 where: <e> - Enable
 0 - Disabled
 1 - Enabled
 S <s> - Sets the SDI data source to <s>
 where: <s> - Data source
 P0 - Physical input 0
 P1 - Physical input 1
 CMB - Combiner
 P <p> - Sets source polarity to <p>
 where: <p> - Polarity
 {0|+} - Active high (normal)
 {1|-} - Active low (inverted)
 L <l> - Sets lock state to <l>
 where: <l> - Lock state
 0 - Normal operation
 1 - Forced active
-1 - Forced inactive

I <t> - Sets internal threshold to <t>, 0 to 65535, or A for automatic
E <t> - Sets external threshold to <t>, 0 to 65535, or A for automatic

Examples:
SDI

SDI enabled
SDI datasource Physical input 0
Lock is normal
SDI lock is inactive
Polarity - High (+)
SDI internal threshold automatically set to 32768
SDI external threshold automatically set to 403

SDI 0 Disable SDI
SDI 1 Enable SDI

SDI E - Sets signal degradation information external threshold

Examples:
SDI E A Set SDI external threshold to automatic
SDI I 1943 Set SDI external threshold to 1943
Valid range 0 to 65535

SDI I - Sets signal degradation information internal threshold

Examples:
SDI I A Set SDI internal threshold to automatic
SDI I 4242 Set SDI internal threshold to 4242
Valid range 0 to 65535

SDI L - Sets signal degradation information lock state

Examples:
SDI L 0 Set SDI lock state to normal operation
SDI L 1 Set SDI lock state to forced active
SDI L -1 Set SDI lock state to forced inactive

SDI P - Sets signal degradation information source polarity

Examples:
SDI P 0 Set SDI source polarity to active high (normal)
Valid active high 0 or +
SDI P 1 Set SDI source polarity to active low (inverted)
Valid active low 1 or -

SDI S - Sets signal degradation information source
Examples:
SDI S P0 Set SDI data source to Physical Input 0
SDI S P1 Set SDI data source to Physical Input 1
SDI S CMB Set SDI data source to Combiner

SDI T - Sets signal degradation information tracking display enable or disable parameters
Examples:
SDI T 0 Disable SDI tracking display
SDI T 1 Enable SDI tracking display

4.9.1.35 Spectrum Inversion - SI
The SI command displays and controls receiver spectrum inversion.

SI [<e>]
where: <e> - Enable
0 - Disabled
1 - Enabled

Example:
SI
Spectrum inversion is disabled

4.9.1.36 Show Serial Number - SN
The SN command displays the part number and serial number for the connected RDMS™.

Example:
SN
Part Number: QSX-RDMS-3R1D-A1-1311-00-14-K7-EQ
Customer Model: CHANNEL 1
Serial Number: 2091
Hardware Rev:

4.9.1.37 Save Parameters - SV
The Save Parameters command erases the stored parameter set and writes the current operating parameter set into
the stored parameter set in a single command.

Example:
SV

Saving parameter data... ok

4.9.1.38 Sync Detect - SYNC

The Sync Detect command displays and controls sync detect settings.

SYNC <e> - Sets sync detect enable to <e>

where:
- <e> - Enable
 - 0 - Disabled
 - 1 - Enabled

Example:

```
SYNC
Sync detect inactive at 50.085 %
Sync detect disabled
Sequence is PN15
Sync detect window length 4095 bits
Sync detect threshold 99.000 %
Sync detect display tracking disabled
```

SYNC [D <e> [<r>]]

- <e> [<r>] - Sets sync detect tracking display enable to <e> at rate <r>

where:

- <e> - Enable
 - 0 - Disabled
 - 1 - Enabled

- <r> - Display rate <r>, 100 to 60000 ms

Example:

```
SYNC D 0 Disable sync detect tracking display
SYNC D 1 Enable sync detect tracking display
```

SYNC [P {<n>|<p>}]

Sets sync detect pattern to PN sequence <n> or fixed pattern <p>

where:

- <n> is PN sequence PN6, PN9, PN11, PN15, PN17, PN20, PN23, PN31 or, a fixed pattern <p> with a length of 2 to 32 bits (fixed pattern lengths are automatically determined, leading 0s significant)

Examples:
SYNC P PN6 Set sync detect pattern to PN6
SYNC P 5 Set sync detect pattern to fixed 5 bit
 Valid range is 2 to 32 bits
Fixed pattern lengths are automatically determined; leading zeroes significant

SYNC [L <l>|T <t>]
 [L <l>] - Sets sync detect window length to <l>, 1 to 4095 bits
 [T <t>] - Sets sync detect correlation threshold to <t>, 0.000 to 100.000 percent

Example:
SYNC L 317 Set sync detect window length to 317
 Valid range is 1 to 4095 bits

SYNC T - Sets sync detect correlation threshold

Example:
SYNC T 35 Set sync detect correlation threshold to 50 percent
 Valid range is 0.000 to 100.00 percent

4.9.1.39 System Status Tracking - SYS

The SYS command displays system status.

SYS [<e> [<r>]] - Sets system status tracking display enable to <e> at rate <r>.

The first argument specifies the period, in milliseconds, between status updates. Zero (0) disables continuous
monitoring.

The second argument specifies the number of status lines between header output.

where:

 <e> - Enable
 0 - Disabled
 1 - Enabled

 <r> - Display rate <r>, 100 to 60000 ms

Examples:
SYS
 System status display tracking disabled
 Input dBm Eb/N0 dB AFC kHz BR Mb/s L Avg DQM TED Q mu Avg TRL MI
 -108.18 -45.15 0.178 0.998965 2.044e-01 -0.000979 1.914 1.614#
SYS 5
 Sets status output period to 5 milliseconds
SYS 5 100
 Sets status header output once every 100 status updates
4.9.1.40 Time of Day - TOD

The Time of Day command displays and sets the current calendar date and time of day values. This is primarily used to add a hard reference to the BERT (BER command) output. It is volatile and must be reset after every power cycle or mode change.

TOD [[mm/dd/yyyy] [hh:mm:ss]]

where:

\[
\begin{align*}
\text{mm} & \quad \text{- Month 1 - 12} \\
\text{dd} & \quad \text{- Day of month 1 - 31} \\
\text{yyyy} & \quad \text{- Year} \\
\text{hh} & \quad \text{- Hour 0 - 23} \\
\text{mm} & \quad \text{- Minutes 0 - 59} \\
\text{ss} & \quad \text{- Seconds 0 = 59}
\end{align*}
\]

Examples:
TOD
10/16/2015 14:34:06
Friday, October 16, 2015 02:34:06 PM
TOD 10/16/2015 14:34:00

4.9.1.41 Show Options - UP

The Show Options command displays unit parameter settings.

Example:
UP

Part Number: QSX-RDMS-3R1D-A1-1311-00-14-K7-EQ
Customer Model: CHANNEL 1
Serial Number: 2091
Hardware Rev:
Revisions options: None
Configured as receiver with IF SAW filters
 1 channel
Housing is rack mount, IF input, TTL output
Enabled extended bands:
 P band: 200.0 to 1150.0 MHz
 CT band: 1150.0 to 2500.0 MHz
 C band: 4400.0 to 5250.0 MHz
 70 MHz band: 70.0 to 70.0 MHz
 Playback band: 0.1 to 20.0 MHz
Enabled modes:
 PSK
 MHCPM
 SOQPSK
 STC
 PCMFM

Pin out:
 00 - Standard

Options:
 EQ - Adaptive Equalizer
 14 - 14 SAW Filters
 K7 - Viterbi decode (k = 7 rate = 1/2)

4.9.1.42 Version - VE

The Version command displays the current application, FPGA, and adaptive equalizer versions.

Example:

VE
 PCMFM FPGA Rev: 0000102A Sep 9 2015 19:19:51
 AEQ Rev: 1.0.5 Sep 9 2015 19:13:52

4.9.1.43 Viterbi Forget Factor - VFF

The Viterbi Forget Factor command reports or sets the Viterbi forget factor, on a scale from 0.01 – 0.99.

VFF [F<>=]
 F <f> - Sets trellis forget factor to <f>, 0.000 to 1.000

Examples:

VFF
 Trellis run length 241.078, increment 14.952
 Trellis forget factor 0.800
VF 0.04 Set the Viterbi forget factor to 0.04
VF 0.62 Set the Viterbi forget factor to 0.62
VF V Show current trellis index (where applicable)
5 Performance Specifications

5.1 Power

The rack-mount receiver requires 100 to 240 VAC, 50/60 Hz power.

5.2 RF Frequency Error

By default, the RDMS™ is capable of acquiring a signal with a frequency error of up to ±100 kHz.

5.3 Bit Error Rate

The RDMS™ meets the following BER limits, when tested with a signal source, which complies with IRIG 106-05.

<table>
<thead>
<tr>
<th>BER</th>
<th>Maximum E_b/N_0 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCM/FM, Tier 0</td>
</tr>
<tr>
<td>10^-3</td>
<td>7.5</td>
</tr>
<tr>
<td>10^-4</td>
<td>9.0</td>
</tr>
<tr>
<td>10^-5</td>
<td>10.0</td>
</tr>
<tr>
<td>10^-6</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Typical BER performance, plotted in Figure 48, is significantly superior to that tabulated above.
5.4 Synchronization

The RDMS™ offers very fast, reliable acquisition, even at very low signal to noise ratio. Synchronization time is a function of modulation type and IF frequency error. Typical SOQPSK results (from 10,000 synchronization trials) are shown in Figure 191.
Figure 191: Synchronization Time at Various Signal-to-Noise Ratios
5.5 RF Input

Available band configurations are shown in Table 2. Two additional band codes are described in section 1.2.3.1. The input impedance is 50 ohms.

Table 11: Band Configuration Codes

<table>
<thead>
<tr>
<th>Freq. Code</th>
<th>200.0 ± Extended</th>
<th>1415.0 ± Extended</th>
<th>1585.0</th>
<th>1650.0 ± Extended</th>
<th>1855.0</th>
<th>185.0 ± Extended</th>
<th>2500.0 ± Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>400.0 ± Base</td>
<td>1150.0</td>
<td></td>
<td>1435.5 ± Base</td>
<td>1534.5</td>
<td>1534.5 ± Base</td>
<td>1750.0 ± Base</td>
</tr>
<tr>
<td>Lower L</td>
<td></td>
<td></td>
<td></td>
<td>1750.0 ± Base</td>
<td>1850.0</td>
<td>1850.0 ± Base</td>
<td>2000.0 ± Base</td>
</tr>
<tr>
<td>Upper L</td>
<td></td>
<td></td>
<td></td>
<td>2200.0 ± Base</td>
<td>2394.5</td>
<td>2394.5 ± Base</td>
<td>4400.0 ± Base</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>4400.0 ± Base</td>
<td>5150.0</td>
<td>5150.0 ± Base</td>
<td>5250.0 ± Base</td>
</tr>
</tbody>
</table>

Legend:
- Frequency Gap
- Standard (Base) Frequency Range
- Extended Frequency Range (available by selecting Extended Tuning = 1 in part number)
5.5.1 Additional Band Codes

Two additional band codes are available:

- Band Code 7: Through the IF Input: 70 MHz through SAW filters, 0.075 MHz-20 MHz, 70 MHz
- Band Code T: 2025.0 MHz to 2110.0 MHz standard range
6 Maintenance Instructions

The Rack-Mount receiver requires no regular maintenance. Please consult the factory for any maintenance, upgrade, or repair requirements.
7 Product Warranty

The RM RDMS™ carries a standard parts and labor warranty of two (2) years from the date of delivery.
8 Technical Support and RMA Requests

In the event of a product issue, customers should contact Quasonix via phone (1-513-942-1287) or e-mail (support@quasonix.com) to seek technical support. If Quasonix determines that the product issue must be addressed at the factory, a returned materials authorization (RMA) number will be provided for return shipment.

Authorized return shipments must be addressed in the following manner:

Quasonix, Inc.
ATTN: Repair, RMA #
6025 Schumacher Park Drive
West Chester, OH 45069

To ensure that your shipment is processed most efficiently, please include the following information with your product return:

- Ship To – Company name, address, zip code, and internal mail-drop, if applicable
- Attention/Contact person – Name, Title, Department, Phone number, email address
- Purchase Order Number – If applicable
- RMA Number – provided by the Quasonix representative

Please note that Quasonix reserves the right to refuse shipments that arrive without RMA numbers.
9 Appendix A – Bit Error Rate Testing

There is a separate BERT for each data path in the receiver (0 main channel, 1 combiner channel). By default all commands are targeted to the current “tracking channel”, 0 or 1.

The results of the test can be displayed using the BER command with no parameters or a continuous display can be produced using BER D 1. BER D 0 turns off the continuous display.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER ?</td>
<td>Bit Error Rate</td>
<td>Provides help for using the bit error rate commands</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
<td>Report bit error rate status</td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td>Examples:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequence is PN15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gating repeat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error interval seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BERT display tracking Normal at 0 ms</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| BER D | Bit Error Rate Output Display| Set the bit error output display to a specific style and display rate
BER [D {{<s> [<r>]}}?]|R}
<s> [<r>] - Sets bit error output display style to <s> at rate <r>
where:
<s> - Style
 O - Off
 N - Normal
 W - Wide
 C - CSV (Comma Separated Values)
<r> - Display rate <r>, 100 to 60000 ms
? - Display style help
R - Reset Display
Examples:
BER D ? Display bit error rate style help
BER D 0 Set bit error rate style to Off
BER D N Set bit error rate style to Normal
BER D W Set bit error rate style to Wide
BER D W 42 Set bit error rate style to Wide with a display rate of 42
Valid range for display rate is 100 to 60000 ms
BER D CSV Set bit error rate style to Comma Separated Values
BER D R Reset display |
| BER G n | Set Bit Error Measurement Gating| Sets bit error measurement gating
The test can be configured to make a single measurement or, when a time limit, bit count, or error count is set, automatically repeat the test.
BER [G <n>]}
Sets bit error measurement gating to <n>
where <n> - Measurement gating
 S - Single
 R - Repeat
Examples:
BER G S Set gating to Single
BER G R Set gating to Repeat |
| BER M | BERT Measurement Status | Display current BERT measurement status in a specific style
BER [M <s>]?}
Examples:
BER M ? Display style help
BER M N N indicates Normal
BER M W W indicates Wide
BER M CSV CSV indicates Comma Separated Values |
<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| BER P n | Set Bit Error Test Pattern | BER \([P \{<n>|<p>\}]\)
P indicates a preset or fixed pattern length
where 'n' is one of:
PN6, PN9, PN11, PN15, PN17, PN20, PN23, PN31
or 'p' is a fixed pattern length of 2 to 32 bits
(fixed pattern lengths are automatically determined and leading zeros are significant)
Examples:
BER P PN9 Set test pattern to preset PN9
BER P 13 Set test pattern to a fixed pattern length of 13 bits |
| BER T n | Set Bit Error Measurement Type | Sets bit error measurement type
The test type can be configured to run continuously or stop when either a time limit, bit count, or error count has been reached. The error count limit guarantees a minimum number of errors.
BER \([T <t>]\)
T indicates type
where 'n' is one of the following:
C = Sets to Continuous (clears limits)
T x = Sets BERT time limit
where 'x' is between 0.000 and 4294967.500 seconds
B x = Sets bit limit
where 'x' is between 1 and 2.81475E+14 bits
E x = Sets error limit
where 'x' is between 0 to 9.3825e+13 errors
Bit count and error count limits are mutually exclusive—either option may be combined with time limit
Examples:
BER T C Set bit error measurement type to Continuous
BER T 2.333 Set BERT time limit to 2.333 seconds
BER T B 1 Set bit limit to 1 bit
BER T E 0.5 Set error limit to 0.5 errors |
BER R Measurement Enable

Starts or Restarts bit error measurement

If a time limit, bit count, or error count limit is set and the limit has been reached (enabled but not running) the BERT is restarted.

Example:

BER R Enter command to Start bit error measurement, current tracking channel

BER S Measurement Disable

Stops bit error measurement

Example:

BER S Enter command to Stop bit error measurement, current tracking channel

The following example illustrates how to display a bit error register. Note the details below.

- A column header is displayed every ten rows.
- The 'E' column indicates the BERT is enabled by displaying a pound sign '#'. If the BERT is not enabled, this column is blank.
- The 'R' column indicates the BERT is actually running and making a measurement by displaying a '!'. If the BERT is not running, this column is blank.
- The BERT can be enabled, but not running, in the case of a time, bit, or error count limit.
- An asterisk '*' after the error rate column indicates that the data is inverted. If the display is continuous and a time, bit, or error limit is set with repeating gating, the display shows the end of the test by displaying '>>>' in the first three columns.

The following shows an example display with a five (5) second repeating test.

PCMFM$ber t 5

Time limit 5 seconds

PCMFM$ber r

Measurement enabled, running

PCMFM$ber d n

Measurement enabled, running

Sequence is PN15

Time limit 5 seconds

Gating repeat

Error interval seconds

BERT display tracking Normal at 0 ms

PCMFM$

<table>
<thead>
<tr>
<th>E R</th>
<th>Time</th>
<th>Bits</th>
<th>Errors</th>
<th>Delta Err</th>
<th>Error Rate</th>
<th>Seconds</th>
<th>Eb/N0 L</th>
</tr>
</thead>
</table>

Quasonix, Inc
9.1 Test Noise Commands

Digitally generated Additive White Gaussian Noise (AWGN) can be injected in the demodulator for test purposes. This noise can exhaust most or all of the demodulator's error-free signal processing margin so that small imperfections in the received signal will be visible as an increase in the bit error rate.

The noise level is calibrated relative to an extremely accurate measurement of the input signal level. This measurement will be most accurate when the received signal has a high signal-to-noise ratio. Therefore, input signal levels above -70 dBm are generally recommended. Due to the available dynamic range of the demodulator signal processing path and the faithful representation of the AWGN, noise samples may be clipped, especially at or below 0 dB Eb/N0.

Note that the noise is injected following downconversion to baseband but before demodulation. Therefore, the noise will affect demodulator output signals, including video outputs and the front panel display (eye diagram or constellation), but it will not change measurements of the input signal (signal strength and signal quality).

The AWGN command, described in Table 13, displays and controls Additive White Gaussian Noise settings.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWGN ?</td>
<td>Test Noise Help</td>
<td>Provides help for using the test noise commands</td>
</tr>
<tr>
<td>AWGN</td>
<td>Test Noise Status</td>
<td>Report test noise status of current tracking channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWGN disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWGN power 50.00 dB E_b/N_0</td>
</tr>
<tr>
<td>AWGN <e></td>
<td>Enable/Disable Test</td>
<td>Turns the test noise output Enabled or Disabled</td>
</tr>
<tr>
<td></td>
<td>Noise</td>
<td>AWGN <e></td>
</tr>
<tr>
<td></td>
<td></td>
<td><e> - Sets AWGN enable to <e></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If 'e' is 0, test noise is Off/Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If 'e' is 1, test noise is On/Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWGN 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWGN enabled</td>
</tr>
</tbody>
</table>

Table 13: Test Noise Commands
<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWGN [P <p>]</td>
<td>Set Test Noise Level</td>
<td>Sets the test noise power level in dB E_b/N_0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range for p is -10.00 dB E_b/N_0 to +50.00 dB E_b/N_0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWGN P 42.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWGN power 42.00 dB E_b/N_0</td>
</tr>
</tbody>
</table>
10 Appendix B – AGC Compensation

10.1 AM Menu

Automatic Gain Control (AGC) Compensation adjusts the AM output to neutralize residual low-frequency amplitude variation due to inherent lag in the AGC. This process provides excellent decoupling between the AGC tracking action and the AM output. However, it adds delay to the AM output, so AGC Compensation may not be suitable for all antenna control applications.

10.1.1 Recommended Settings

Recommended AM and AGC settings depend on three primary parameters: ACU scan type (conical or e-scan), ACU scan rate, and ACU control loop bandwidth. Table 14 describes recommended settings based on these parameters:

<table>
<thead>
<tr>
<th>AGC Time Constant (ms)</th>
<th>AM Bandwidth (Hz)</th>
<th>AGC Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conical scan, slow loop</td>
<td>875 / ScanRate</td>
<td>3 * ScanRate</td>
</tr>
<tr>
<td>Conical scan, fast loop</td>
<td>3000 / ScanRate</td>
<td>3 * ScanRate</td>
</tr>
<tr>
<td>E-scan</td>
<td>875 / ScanRate</td>
<td>9 * ScanRate (1)</td>
</tr>
</tbody>
</table>

(1) up to a maximum of 50 kHz

In Table 14, ScanRate is the antenna scan rate in Hz.

For example, suppose a conical scan system with slow loop tracking has a scan rate of 30 Hz. This system has a recommended AGC Time Constant of 875 / 30 = 29 ms and an AM Bandwidth of 3 * 30 = 90 Hz, with AGC Compensation ON.

The distinction between “slow loop” and “fast loop” is generally not simple to infer. An empirical approach would be to assume slow loop, gaining the benefits of AGC Compensation if possible. The fast loop settings would be used if the slow loop settings do not provide stable antenna tracking.
11 Appendix C – Phase Noise Compensation

11.1 Trellis Demodulation Basics

Legacy Single-Symbol Detection:
- Uses basic Limiter-Discriminator operation
- Frequency in this bit above nominal → data = 1
- Frequency in this bit below nominal → data = 0
- Makes no use of adjacent symbols for error correction

Trellis Detection:
- Uses the phase tree for data detection
- Uses adjacent symbols to help decide on “iffy” bits
- Improves BER performance by 3.5 to 5.0 dB

The Phase Tree shown in Figure 192, shows all of the possible paths the phase trajectory can take over a period of seven bits. Figure 193 shows the two unique paths, based on whether the second bit is a 1 or 0.

![Phase Tree Diagram](image-url)
11.1.1 Trellis Demodulation Summary

The basic premise of trellis demodulation is that the signal from the transmitter follows a known path through the phase tree. When the demodulator knows this, it can use a sequence of several symbols to help make better decisions about each individual bit. This process improves BER performance by about 3.5 to 5 dB over conventional FM detection. However, this assumes that the transmitter is really following the "known" and "correct" phase tree, and this assumption is NOT always true.

High phase noise can reduce the trellis detection gain because phase noise corrupts the tree. The following figures illustrate the differences in trellis detection gain depending on the amount of phase noise introduced.

Figure 194: Trellis Detection Gain with Zero to Minimum Phase Noise
11.2 Phase Noise Impact

Trellis demodulation is based on the assumption that the signal is following a predictable path through the trellis. If this is not true (due to high phase noise), then a trellis demodulator cannot provide the expected performance gain.

- Many legacy analog transmitters (a simple modulated VCO) have high phase noise.
- Vibration often further increases phase noise.
- Phase noise is generally more damaging at low bit rates.
- Phase Noise Compensation (PNC) gives back some of the trellis detection gain, by shortening the trellis observation span.

11.3 Clock Jitter Impact

Many older PCM encoders are susceptible to large inaccuracies in clock rate or have clock stability issues, especially under harsh vibration conditions. While the RDMS is capable of tracking static clock rate errors as large as 1000 ppM, excessive jitter causes the integrated bit sync to lose lock. Enabling the PNC mode opens the tracking loop bandwidth to accommodate for these issues. This increase in bandwidth does have a tradeoff. A wider tracking range allows the RDMS to deal with the additional jitter, but it may also increase synchronization times slightly, and slightly increase the minimum SNR at which the RDMS declares lock.

11.4 When to Use PNC

There is no bullet-proof test for whether PNC is needed, but there are good indicators. Turn on PNC if:

- The demodulator is struggling to lock, even with good Signal to Noise Ratio (SNR). ("Good" SNR means the Quality bar is above one-quarter height.)
- The eye pattern NEVER looks “clean,” as in Figure 196
- Symptoms get worse when the transmitter is under vibration
- Symptoms get worse at low bit rates
11.5 Know Your Transmitter

If you know the brand and type of transmitter, these tips can help determine when to use PNC.

If your transmitter was manufactured by these companies, PNC should be OFF:

- Quasonix – guaranteed
- Nova Engineering – highly likely
- L3 – probably, but digital transmitters only

If the transmitter was manufactured by the companies below, PNC should be ON:

- Microwave Innovations
- Emhiser
- Southern California Microwave
- L3 (analog transmitters)
12 Appendix D - PCM Framer/Deframer Function

Quasonix RDMS™ receivers recognize PCM frames as defined by IRIG 106 Chapter 4 and Appendix C. The receiver can provide basic processing of a large subset of possible frame configurations, including sync word detection, subframe ID checking, and data extraction from the frame structure (without decommutation). Within the receiver, this functionality is referred to as the PCM Deframer.

To facilitate testing the PCM Deframer, Quasonix Receiver Analyzers can generate PCM frames using external (user) data or internal test patterns for the frame payload. Within the Receiver Analyzer, this functionality is referred to as the PCM Framer.

This note describes the detailed capabilities of the PCM Framer and Deframer.

12.1 PCM Framer

The PCM Framer supports fixed-length PCM frame generation with the following parameters:

- Major frame length up to 256 minor frames
- Minor frame length up to 16,384 bits
- Minor frame sync pattern 16 to 33 bits (user-selectable pattern and length)
- Optional subframe ID (SFID) insertion (word 1 position only)

The resulting PCM frame format appears as:

![Frame Format with SFID Insertion Enabled](image)

Major Frame Length = Minor Frame Maximum Length multiplied by Z
The PCM Framer uses serial streaming data, either from an external source or an internal pattern generator, to fill the data portion of the frame. There is no mechanism to align specific sets of serial bits to Data words, and there is no mechanism to align specific data words to a given position within the frame format. Therefore, the PCM Framer cannot generate frames with data parameters suitable for decommutation. It can, however, be used to test frame synchronization and link quality via SFID verification. Further, if the serial streaming data is a known pattern, the data can be monitored by a BERT at the receiving end after data extraction.

12.2 PCM Deframer

The PCM Deframer supports **fixed-length** PCM frame recognition with the following parameters:

- Major frame length up to 256 minor frames
- Minor frame length up to 16,384 bits
- Minor frame sync pattern 16 to 33 bits (user-selectable pattern and length)
- Optional subframe ID (SFID) checking (word 1 position only)

Acquisition of PCM frame lock takes place according to the process recommended by RCC 119 Section 4.6. There are four settable parameters that are used to configure acquisition and re-acquisition:

- CORR_APERTURE – Number of bits, early or late, that the sync pattern may appear relative to other detected sync patterns and still be detected
- CORR_THRESH – Number of bits of the sync pattern that must match to declare sync detect
- LOCK_THRESH – Number of valid sync detects required to declare PCM frame lock
- SEARCH_THRESH – Number of invalid sync detects required to declare loss of PCM frame lock (once locked)

The PCM Deframer acquires frame lock using the following states:

- Search – Detect sync pattern if correlation of any set of bits exceeds CORR_THRESH
- Check – Declare PCM frame lock if valid sync pattern appears LOCK_THRESH consecutive times
- Lock – Maintain PCM frame lock until invalid sync pattern appears SEARCH_THRESH consecutive times

SFID checking occurs whenever PCM frame lock is detected. The SFID is expected to be located in the first word after the sync pattern, as shown in Figure 197, and it is considered valid if it is one greater than the previous SFID, or if it is 1 and the previous SFID was Z (the major frame length).

The PCM Deframer cannot be programmed to perform decommutation. It can, however, optionally strip the sync pattern and SFID (if present) to leave only the frame data. If the frame data is a known pattern, it can be monitored by a BERT to measure link performance.

The RDMS™ receiver can output PCM frame lock and/or SFID valid indications on the DEMOD_LOCK and/or ONES_DETECT back-panel outputs. Refer to the RDMS™ data sheet for more information about these outputs.
13 Appendix E – Factory Reset Values

When a reset command is activated, the frequency defaults to the lowest valid frequency for the lowest authorized band on the unit. The reset priority is:

1. PCM/FM
2. SOQPSK
3. Multi-h CPM
4. QPSK

Reset values for each mode are listed in the following tables.

The default Frequency is 2200.000 MHz.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reset State</th>
<th>Parameter</th>
<th>Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate</td>
<td>1</td>
<td>Phase Noise Compensation</td>
<td>Off</td>
</tr>
<tr>
<td>Combiner (if available)</td>
<td>Off</td>
<td>Muting Timeout</td>
<td>1000</td>
</tr>
<tr>
<td>Clock Polarity</td>
<td>Normal</td>
<td>Output Muting</td>
<td>Off</td>
</tr>
<tr>
<td>Data Polarity</td>
<td>Normal</td>
<td>Downconvert Antenna</td>
<td>Disabled</td>
</tr>
<tr>
<td>Equalizer (if available)</td>
<td>Off</td>
<td>AGC Polarity</td>
<td>+ (Positive)</td>
</tr>
<tr>
<td>DQ Encapsulation (if available)</td>
<td>Disabled</td>
<td>AGC Scale</td>
<td>10</td>
</tr>
<tr>
<td>Derandomizer</td>
<td>Disabled</td>
<td>AGC Time Constant</td>
<td>100</td>
</tr>
<tr>
<td>Differential Decoder</td>
<td>N/A</td>
<td>AGC Zero Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>Modulation Scaling</td>
<td>Acquire</td>
<td>AM Bandwidth</td>
<td>100</td>
</tr>
<tr>
<td>Modulation Persist</td>
<td>Off</td>
<td>AM Polarity</td>
<td>Normal</td>
</tr>
<tr>
<td>IF Filter</td>
<td>Auto</td>
<td>AM Scale</td>
<td>1</td>
</tr>
<tr>
<td>Video De-emphasis</td>
<td>Off</td>
<td>AGC Compensation</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Table 16: SOQPSK Factory Reset Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate</td>
<td>1</td>
</tr>
<tr>
<td>Modulation Scaling</td>
<td>N/A</td>
</tr>
<tr>
<td>Clock Polarity</td>
<td>Normal</td>
</tr>
<tr>
<td>Data Polarity</td>
<td>Normal</td>
</tr>
<tr>
<td>Derandomizer</td>
<td>Disabled</td>
</tr>
<tr>
<td>Differential Decoder</td>
<td>Enabled</td>
</tr>
<tr>
<td>IF Filter</td>
<td>Auto</td>
</tr>
<tr>
<td>Downconvert Antenna</td>
<td>Disabled</td>
</tr>
<tr>
<td>AGC Zero Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>Convolutional Decoder</td>
<td>N/A</td>
</tr>
<tr>
<td>Lock Output Polarity</td>
<td>Active High</td>
</tr>
<tr>
<td>NRZ Encoding</td>
<td>N/A</td>
</tr>
<tr>
<td>Output Control</td>
<td>Default</td>
</tr>
<tr>
<td>Output Muting</td>
<td>Disabled</td>
</tr>
<tr>
<td>Phase Noise Compensation</td>
<td>Disabled</td>
</tr>
<tr>
<td>Tape Output</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Table 17: Multi-h CPM Factory Reset Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate</td>
<td>1</td>
</tr>
<tr>
<td>Modulation Scaling</td>
<td>N/A</td>
</tr>
<tr>
<td>Clock Polarity</td>
<td>Normal</td>
</tr>
<tr>
<td>Data Polarity</td>
<td>Normal</td>
</tr>
<tr>
<td>Derandomizer</td>
<td>Disabled</td>
</tr>
<tr>
<td>Differential Decoder</td>
<td>N/A</td>
</tr>
<tr>
<td>IF Filter</td>
<td>Auto</td>
</tr>
<tr>
<td>Downconvert Antenna</td>
<td>Disabled</td>
</tr>
<tr>
<td>AGC Zero Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>Convolutional Decoder</td>
<td>N/A</td>
</tr>
<tr>
<td>Lock Output Polarity</td>
<td>Active High</td>
</tr>
<tr>
<td>NRZ Encoding</td>
<td>N/A</td>
</tr>
<tr>
<td>Output Control</td>
<td>Default</td>
</tr>
<tr>
<td>Output Muting</td>
<td>Disabled</td>
</tr>
<tr>
<td>Phase Noise Compensation</td>
<td>Disabled</td>
</tr>
<tr>
<td>Tape Output</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Table 18: QPSK Factory Reset Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reset State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate</td>
<td>1</td>
</tr>
<tr>
<td>Modulation Scaling</td>
<td>N/A</td>
</tr>
<tr>
<td>Clock Polarity</td>
<td>Normal</td>
</tr>
<tr>
<td>Data Polarity</td>
<td>Normal</td>
</tr>
<tr>
<td>Derandomizer</td>
<td>Disabled</td>
</tr>
<tr>
<td>Differential Decoder</td>
<td>N/A</td>
</tr>
<tr>
<td>IF Filter</td>
<td>Auto</td>
</tr>
<tr>
<td>Downconvert Antenna</td>
<td>Disabled</td>
</tr>
<tr>
<td>AGC Zero Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>Convolutional Decoder</td>
<td>Disabled</td>
</tr>
<tr>
<td>Lock Output Polarity</td>
<td>Active High</td>
</tr>
<tr>
<td>NRZ Encoding</td>
<td>NRZ-L</td>
</tr>
<tr>
<td>Output Control</td>
<td>Default</td>
</tr>
<tr>
<td>Output Muting</td>
<td>Disabled</td>
</tr>
<tr>
<td>Phase Noise Compensation</td>
<td>Disabled</td>
</tr>
<tr>
<td>Tape Output</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Because formatting standards may differ by region or country, Windows software may set defaults for your PC to values not expected by the RDMS™ software. Changing these settings, as described in this section, should resolve regional connectivity issues.

14.1 IP Address Separator

An incorrect IP address separator results in the RDMS™ Browser Interface being unable to connect to the PC. Any separator other than a period (.) is unrecognizable by the RDMS™ software. Some regions use a comma (,) instead of a period to separate the fractional part of decimal numbers. For example:

123,456,789

instead of

123.456.789

Typically, changing the Regional Settings option for the list separator on the PC from a comma to a period will resolve the problem.

To change the settings on a Windows 7 machine:

5. Access the Control Panel from the Start Menu. The Start Menu is usually the first icon on the bottom of the PC screen—a circle with four windows in it. Click on Control Panel.
6. When the Computer Settings window displays, click on the Region and Language selection (labeled 2 in Figure 199). This causes the Region and Language window to display (labeled 3 in Figure 199).

![Figure 199: Region and Language Selection](image)

7. In the Region and Language window, click on the Additional Settings button. The Customize Format window displays (shown in Figure 200).
8. Use the down arrow in the List Separator column to change the comma to a period. Click on the OK button to complete the change and close the window.

9. Click on the OK button in the Region and Languages window to close the window. The separator in the IP list should now be the period (.).
15 Appendix G - RDMS with -IP Option

15.1 Overview

This appendix describes how to operate a 3U Rack-Mount RDMS™ Telemetry Receiver with the -IP (TMoIP) option (Telemetry over IP).

The Browser-based graphical user interface (GUI) provides RDMS and TMoIP configuration, control, and status. PCM serial input channels support automatic bit rate detection and IP packet size auto-configuration.

For detailed operational information refer to the documents in Table 19.

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasonix 3rd Generation Rack-Mount RDMS™ Telemetry Receiver Installation and Operation Manual (this document)</td>
<td>N/A</td>
</tr>
<tr>
<td>NetAcquire® Telemetry over IP (TMoIP) Option Users Manual</td>
<td>NA-MAN-021</td>
</tr>
<tr>
<td>NetAcquire® Server for RDMS Users Manual</td>
<td>NA-MAN-001</td>
</tr>
<tr>
<td>NetAcquire® Serial I/O Option Users Manual</td>
<td>NA-MAN-003</td>
</tr>
<tr>
<td>NetAcquire® IRIG Option Users Manual</td>
<td>NA-MAN-023</td>
</tr>
</tbody>
</table>

15.2 Hardware

The 3U Rack-Mount RDMS back panel provides connectors used specifically with the -IP (TMoIP) option. The full back panel is shown in Figure 201. An enlarged view of the right side with TMoIP connectors is shown in Figure 202.
The ports used specifically for TMoIP operation are described in Table 20. EVTM ports are NOT enabled when using TMoIP.

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Purpose</th>
<th>Port Type</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDMS Control</td>
<td>Browser control network interface</td>
<td>Ethernet (RJ-45)</td>
<td>J80</td>
</tr>
<tr>
<td>TMOIP</td>
<td>Data stream out</td>
<td>Ethernet (RJ-45)</td>
<td>J82</td>
</tr>
<tr>
<td>IRIG-B IN</td>
<td>IRIG-B Time Input</td>
<td>BNC</td>
<td>J77</td>
</tr>
<tr>
<td>IRIG-B OUT</td>
<td>IRIG-B Time Output</td>
<td>BNC</td>
<td>J78</td>
</tr>
<tr>
<td>TMOIP USB</td>
<td>Keyboard or mouse, if desired</td>
<td>USB</td>
<td>J83</td>
</tr>
<tr>
<td>TMOIP VGA</td>
<td>NetAcquire video out to monitor, if desired</td>
<td>SVGA HD-15</td>
<td>J84</td>
</tr>
</tbody>
</table>
15.3 Set Up TMoIP IP Address

The TMoIP enabled receiver must be accessed directly via a web browser. Refer to the front panel Main Menu > System Settings selection to determine the IP address of the RDMS Control Ethernet interface (J80).

1. Open a browser on the connected PC.
2. Type the IP address for the TMoIP enabled receiver into the browser, then press Enter on the keyboard.

 If the screen in Figure 203 displays, click on the Set Address button.

![Figure 203: Browser Window with an Incorrect IP Address](image)

When the Receiver Addressing window displays (Figure 204), type the correct IP address in the Receiver IP Address field, then click on the OK button. The IP address requested is located on the front panel Main Menu > System Settings screen.

![Figure 204: Receiver Addressing Window](image)

When the correct IP address is entered, the Browser Interface screen displays. *The NetAcquire TMoIP option requires a web browser with Java enabled.*

15.4 Browser Interface

The Browser Interface provides the user with full configuration, control, and monitoring capabilities for one or multiple rack-mount receivers. For configuration management purposes, only one browser interface can configure a receiver at a given time. However, multiple browser interfaces can monitor an individual receiver’s status at once.

The RDMS™ Browser Interface consists of a tool bar at the top of the screen, shown in Figure 114, with six selections that display a variety of parameters for each available channel. The Browser Interface defaults to the Network screen.
The RDMS Network, Monitor, Configure, Presets, and About screens are described in section 4.7 of this manual. The TMoIP functionality is accessed via the TMoIP tab, as shown in Figure 206. Detailed information about each TMoIP screen is found in the NetAcquire® Telemetry over IP (TMoIP) Option Users Manual.

15.4.1 TMoIP Monitor/Configure Screen

The TMoIP Monitor/Configure screen, shown in Figure 115, is the primary operator interface for the TMoIP status and configuration.

In addition to providing status, a key capability of the TMoIP Monitor/Configure screen is selecting the parameters of TMoIP network output packets. Configuration is accomplished by scrolling to the row of the desired Local (TMoIP) Channel, then clicking on the Local Endpoint field, as shown in Figure 208. Associated configuration and control information displays in the right side pane.
15.4.2 TMoIP Network Screen

The TMoIP Network screen, shown in Figure 209, configures the TMoIP network interfaces. The last interface listed in the left pane, Net 2, is not used.
15.4.3 TMoIP Serial I/O Screen

The TMoIP Serial I/O screen, shown in Figure 210, updates status and configures serial input channels for TMoIP.

![Figure 210: TMoIP Serial I/O Screen](image)

15.4.4 TMoIP Log Screen

The TMoIP Log screen, shown in Figure 211, displays NetAquire server message log entries.

![Figure 211: TMoIP Log Screen](image)
15.4.5 TMoIP System Screen

The TMoIP System screen is shown in Figure 212. It provides links to a variety of configuration and status screens. The default view contains basic links used by most operators but additional links may be displayed by clicking on the Advanced View check box.

![Figure 212: TMoIP System Screen, Basic](image)

15.4.6 TMoIP About Screen

The TMoIP About screen, shown in Figure 213, provides NetAcquire® server status information, such as host resources, network interface, and server task status.

![Figure 213: TMoIP About Window](image)

Detailed information about each TMoIP screen is found in the NetAcquire® Telemetry over IP (TMoIP) Option Users Manual (NA-MAN-021).
16 Appendix H – Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC</td>
<td>Automatic Gain Control</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitude Modulation</td>
</tr>
<tr>
<td>AQPSK</td>
<td>Variant of Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>ARTM</td>
<td>Advanced Range Telemetry</td>
</tr>
<tr>
<td>AUQPSK</td>
<td>Variant of Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>BEP</td>
<td>Bit Error Probability</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BNC</td>
<td>Bayonet Neill-Concelman Connector (RF Connector)</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>CPM</td>
<td>Continuous Phase Modulation</td>
</tr>
<tr>
<td>DB-9</td>
<td>D-subminiature 9 pin Serial Connector</td>
</tr>
<tr>
<td>DC</td>
<td>Diversity Combiner</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DPM</td>
<td>Digital Phase Modulation</td>
</tr>
<tr>
<td>DQE</td>
<td>Data Quality Encapsulation</td>
</tr>
<tr>
<td>DQM</td>
<td>Data Quality Metric</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>kbps</td>
<td>Kilobits per second</td>
</tr>
<tr>
<td>KHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LDPC</td>
<td>Low Density Parity Check</td>
</tr>
<tr>
<td>mbps</td>
<td>Megabits per second</td>
</tr>
<tr>
<td>MCX</td>
<td>Snap on subminiature connector</td>
</tr>
<tr>
<td>MHCPM</td>
<td>multi-h Continuous Phase Modulation</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>N</td>
<td>(connector type) Threaded RF connector</td>
</tr>
<tr>
<td>OQPSK</td>
<td>Offset Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>PCMFM</td>
<td>Pulse Code Modulation/Frequency Modulation</td>
</tr>
<tr>
<td>PM</td>
<td>Phase Modulation</td>
</tr>
<tr>
<td>PSK</td>
<td>Phase Shift Keying</td>
</tr>
<tr>
<td>QPSK</td>
<td>Offset Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RDMS</td>
<td>Receiver DeModulator Synchronizer</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RJ-45</td>
<td>Ethernet Connection Jack</td>
</tr>
<tr>
<td>RM</td>
<td>Rack-Mount</td>
</tr>
<tr>
<td>RS-232</td>
<td>Recommended Standard 232 (Serial Communications)</td>
</tr>
<tr>
<td>SAW</td>
<td>Sawtooth Wave</td>
</tr>
<tr>
<td>SDI</td>
<td>System Degradation Indication</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SOQPSK</td>
<td>Shaped Offset Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>SOQPSK-TG</td>
<td>Shaped Offset Quadrature Phase Shift Keying – Telemetry Group</td>
</tr>
<tr>
<td>STC</td>
<td>Space-Time Coding</td>
</tr>
<tr>
<td>TRL</td>
<td>Tracking Loop</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor Transistor Logic</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UQPSK</td>
<td>Unbalanced Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VAC</td>
<td>Voltage Alternating Current</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
</tbody>
</table>