Quasonix

Digital Signal Processing to Improve Telemetry Links

A Short Course at the International Telemetering Conference Glendale, AZ • 27 October 2022 Terry Hill, Quasonix

Course Outline

Receiver-Only DSP

- Trellis Demodulation
- Diversity Combining
- Data Quality Metric / Data Quality Encapsulation
- Adaptive Equalization
- Best Channel Selection
- Best Source Selection

• RX/TX DSP

- Space-Time Coding
- Forward Error Correction (FEC)
- Using All the Tools Together

Receiver-Only DSP Techniques

- Receive-side processing, no transmitter impact
- Trellis demodulation
- Maximal ratio combining optimal against AWGN
 - Polarization diversity
 - Frequency diversity
- Data Quality Metric (DQM) / Data Quality Encapsulation (DQE)
 - IRIG 118-22, Chapter 11
- Adaptive equalization
 - Powerful tool against multipath
- Best channel selection
 - Handles the "non-combinable" cases
- Best source selection
 - Combats all forms of signal impairment

Quasonix

Trellis Demodulation

Demodulation

- As the shop manual says, "Installation is reverse of removal."
- Demodulation is intrinsically more difficult than modulation
 - Unknown carrier frequency
 - Unknown carrier phase
 - Unknown clock frequency and phase
 - Signal corruption
 - Noise
 - Interference
 - Multipath
 - Doppler shift
- Multiple techniques can be applied

Single-Symbol Demodulation

• Tier 0

- Legacy (nearly exclusive in 20th century)
- Simple to build
- Robust to signal defects and channel impairments

• Tier I

- Requires optimization for SOQPSK
- Weakly synchronized
- Requires high SNR for acquisition
- ∼1.0 to 1.5 dB short of theoretical limit
- Tier II
 - No practical single-symbol detectors

Trellis Demodulation Overview

• Tier 0

- Invented in 1974, introduced in 2001
 - Osborne & Luntz, "Coherent and Noncoherent Detection of CPFSK", IEEE T-COM, August 1974
- Requires significant signal processing power
- Signal defects and channel impairments require attention
 - DSP techniques can be applied to solve these issues
- Operates within 0.2 dB of theoretical limit
- Tier I
 - Strong, rapid synchronization
 - Operates within 0.2 dB of theoretical limit
- Tier II
 - Mandatory for practical implementation

Tier 0 Phase Tree

Why Does It Matter?

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

BER Performance Comparison

Maximal Ratio Combining

- Many telemetry systems utilize diversity reception
 - Frequency separation using two transmitter
 - Orthogonal polarizations using cross-polarized antenna feeds
- Combining two (or more) copies of the same signal
 - Diversity combining
 - Creates a third signal to be demodulated
 - BER performance of third signal is better than either of the individual signals
- Special case the leading use of diversity
 - Linearly polarized transmit antenna on test article could be at any orientation
 - Left-hand and right-hand circularly polarized receive antennas
 - Each receive antenna loses half the transmit power
 - Diversity combiner puts it all back together, eliminating the polarization loss
 - Frequency diversity works the same way, but uses twice the bandwidth

Maximal Ratio Combining

- Weight each signal in proportion to its SNR and add
- Yields optimum SNR on combined channel in AWGN
- SNR_{combined} = SNR_a + SNR_b

Maximal Ratio Combining

• Jump to

file://localhost/Users/TerryHill/Documents/Quasonix/ITC 2015/Diversity Combiner.avi

BER Results - Fading Signals

Measured Combiner BER - Tier 0

Measured Combiner BER - Tier I

Measured Combiner BER - Tier II

Combiner Summary

- Receive-side processing
 - No transmitter impact
- Phase aligns the signals
- Forms weighted sum of two inputs
- SNR of the weighted sum is at least as high as the better signal
- May be as much as 3 dB higher (equal input case)
- Conventional combiner design assumes signals are time-aligned
 - Performance falls off rapidly with increasing time skew
 - Combiner will probably fail altogether at $\pm \frac{1}{2}$ bit time skew
- Some combiners do both phase alignment *and* time alignment
 - Supports operation with spatially separated antennas
- If you have access to two copies of the signal, use them!

Quasonix

Data Quality Metric (DQM)

How to Assess Data Quality

- Measured BER is not practical
 - Requires known data in the stream not possible with encryption
 - Takes a long time to measure low BERs
- Bit error *probability* (BEP), however...
 - Does not require any known data
 - Can be determined quickly and accurately from demodulator statistics
 - Is an *unbiased* quality metric, regardless of channel impairments
 - When calibrated per a standardized procedure, DQM based on BEP allows DQE from multiple vendors to interoperate
- Each vendor can use their own algorithm for developing BEP
- DQM is calculated directly from BEP
 - Use of Likelihood Ratio leads to maximum likelihood BSS algorithms
 - Converted to 16-bit integer on log scale

Definition of DQM

- Start with BEP, derived within demod
- Likelihood Ratio (LR) = (1 BEP) / BEP
- DQM = min (round (log10 (LR) / 12 * (2^16)), 2^16 -1)
 - 16-bit unsigned integer, ranges from 0 to 65,535
- Easily reversed:
 - LR = 10^(-12 * DQM / 2^16)
 - ♦ BEP = 1 / (1 + LR)
- Define "Q" as the "User's DQM"
 - Q = 12 * DQM / 65535
 - Represents the exponent of 10 in the BEP
 - Examples:
 - Q = 3 → BEP = 1e-3
 - Q = 7 → BEP = 1e-7
 - Arbitrarily cap Q at "a perfect 10".

BEP	LR	DQM	Q
0.5	1.00	0	0.00
1E-01	1.11111E-01	5211	0.95
1E-02	1.01010E-02	10899	2.00
1E-03	1.00100E-03	16382	3.00
1E-04	1.00010E-04	21845	4.00
1E-05	1.00001E-05	27307	5.00
1E-06	1.00000E-06	32768	6.00
1E-07	1.00000E-07	38229	7.00
1E-08	1.00000E-08	43691	8.00
1E-09	1.00000E-09	49152	9.00
1E-10	1.00000E-10	54613	10.00
1E-11	1.00000E-11	60075	10.00
1E-12	1.00000E-12	65535	10.00

DQE Format

• Header

- 16-bit sync pattern (0xFAC4)
 - MSB first: 1111101011000100
- 8-bit reserved word, potentially for packet header version number (currently 0)
- 8-bit reserved word, potentially for source ID tag (currently 0)
- 16-bit DQM

Payload data

- User selectable length, $(128 \le N \le 16,536)$
- Defaults to 4096

16-bit Sync Pattern	8-bit Word 8-bit Word	16-bit DQM	N bits of payload data (128 ≤ N ≤ 16,536)
---------------------------	--------------------------------	---------------	---

DQM Parameter Trades

 Choice of N impacts both DQM update rate and network efficiency

Calibration of DQM

- Calibrate DQM under various channel impairments:
 - AWGN static level
 - AWGN dynamic level (step response)
 - Dropouts
 - In-band and adjacent channel interference
 - Phase noise
 - Timing jitter
 - Static multipath
- Test procedures are being developed to evaluate accuracy of DQM
 - Targeted for inclusion in IRIG 118

DQM Calibration Fixture

- Synthesize "impaired" RF signal
- Recover the "corrupted" data (with clock)
- Extract the frame sync word, including DQM
- Measure BER of payload data
- Compare DQM (converted to BEP) to measured BER
 - Recorded and stored on a packet-by-packet basis

DQM Calibration in AWGN

• Required as a baseline for all other tests

DQM Step Response

- Assesses timeliness of DQM values
- UUT stays synchronized during test

DQM Fade Recovery

Includes UUT synchronization time

IRIG 118-22 Chapter 11

• First, DQE frame format must be correct

16 Bits	12 Bits	4 Bits	16 Bits	1024 – 16384 Bits
SW	RSV	VER	DQM	PAYLOAD

- a. SW = Sync Word. The sync word is a fixed value of 0xFAC4.
- b. RSV = Reserved. Reserved for future use.
- c. VER = IRIG 106 Version number.
- d. DQM = Data Quality Metric.
- e. PAYLOAD = Telemetry data payload to which the DQM value applies.

IRIG 118-22 Ch. 11

• Defines 6 standard DQM tests

Table 11-2. Test Matrix for Data Quality Metric Testing			
Test Number	Test Description		
11.1	BER vs BEP with Additive Noise		
11.2	DQM (BEP) Step and Dwell Response		
11.3	BER vs BEP with Adjacent Channel Interference		
11.4	BER vs BEP for Static 3-Ray Multipath Channel Conditions		
11.5	BER vs BEP for Static 2-Ray Multipath Channel Conditions		
11.6	DQM (BEP) Resynchronization Response		

IRIG 118-22 Ch. 11

- Defines standard test fixture
- Each DQE frame must be scored individually

Figure 11-1. Setup for Step Attenuator/Power Meter for BER versus BEP Test

Basic AWGN Sweep

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Basic AWGN BER v. BEP

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Step AWGN BER v. BEP

Terry Hill - thill@quasonix.com

Not All DQMs are Created Equal

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com
BER v. BEP in Multipath

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Multipath is Ugly

Equalization can turn

Adaptive Equalization

- Consider the multipath channel to be a filter
 - Varies over time
- Consider building a filter which "undoes" the filtering imposed by the channel
 - Let it keep track of the the channel and continuously adapt itself to the channel
- Presto! You have an adaptive equalizer
 - Can repair damage done by multipath
 - Works with a single receiver
 - Requires no bandwidth expansion
 - Requires no changes to the transmitter

Equalizer Techniques

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Generic Adaptive Equalizer

Equalizer Adaptation

Adaptive Equalizer in Action

Adaptive Equalizer Summary

- Adaptive equalizer can "undo" multipath distortion
- Requires no changes at the transmit end
 - If available, a training sequence can be helpful
- Effectiveness of equalizer depends on the severity of the multipath
- Well-designed equalizers monitor their own performance, and disengage when they are doing badly.
 - This must be done without losing bit count integrity
- If you have multipath, use an equalizer!

Quasonix

Performance Evaluation of Adaptive Equalizers

So Many Channels...

- Each path is characterized by
 - Delay
 - Amplitude
 - Phase shift (potentially time-varying)
- 2, 3, or more paths
- Modulation matters
- SNR matters
- Need a 10-dimensional universe to plot the results
- Way too many test points

Let's Simplify

- Stick to 2-ray model
 - Easy to synthesize
 - Still allows a range of channels from easy to impossible
 - Maybe we add a third ray for a limited set of tests
- Stick to one SNR
 - High enough that the equalizer works on mitigating multipath, not rejecting noise
 - Not so high that there are never any bit errors
 - Should reflect actual use cases
 - Propose 20 dB
- Limited set of amplitudes and delays
- Many phase angles

Proposed Signal Conditions

- Pick a carrier frequency
 - How many?
 - Nulls "sweep faster" at higher frequencies (dynamic case only)
- 20 dB SNR (without multipath)
- Tier 0, I, and II
 - Tier 0: 1, 5, 10, 20 Mbps
 - Tier I and Tier II: 2, 10, 20, and 40 Mbps
- Areas for further research
 - STC different multipath on each signal, hmmm....
 - ◆ LDPC six codes?

Proposed *Static* Channels

- Channel response depends on
 - Carrier frequency, ω_c
 - Delay, au_1
 - Reflection amplitude, $|\Gamma_1|$
 - Reflection phase, $\angle \Gamma_1$
- Delays (in bits) of 0.5, 1, 2, 5, 10, 20, and 50
 - Delays much shorter than 0.5 bit are essentially flat fades, where the signal power is simply gone. EQ cannot help.
- Amplitudes of 0.5 to 0.9 in steps of 0.1
 - For bonus points, include 0.95 and 0.98
- Phases of 0° to 360° in 10° steps

What is the Measured Value?

- Must be observable with EQ both on and off
- Bit error rate is universally understood
- DQM is readily computed from BER
 - With calibration, DQM is much more quickly measured
- Remind me again, what is DQM?

Definition of DQM (a.k.a. Q)

- To a statistician, DQM is the "Log Likelihood Ratio"
- Start with probability of error, P
 - Be practical: 0.5 < P < 1e-12
 - BEP, derived within demod
 - BER, measured with a BERT
- Likelihood Ratio (LR) = P / (1 P)
- $Q = min (-log_{10}(LR), 12)$
- Easily reversed:
 - ♦ P = 10^{-Q} / (1 + 10^{-Q})
- Short version
 - ◆ Q = 5 → P = 1e-5

Р	Q					
0.5	0.000					
1E-01	0.954					
1E-02	1.996					
1E-03	3.000					
1E-04	4.000					
1E-05	5.000					
1E-06	6.000					
1E-07	7.000					
1E-08	8.000					
1E-09	9.000					
1E-10	10.000					
1E-11	11.000					
1E-12	12.000					

DQM Calibration Fixture

- Synthesize "impaired" RF signal
- Recover the "corrupted" data (with clock)
- Extract the frame sync word, including DQM
- Measure BER of payload data
- Compare DQM (converted to BEP) to measured BER
 - Recorded and stored on a packet-by-packet basis

Test Procedure

- Set frequency, modulation, and bit rate
- Turn the equalizer off
- Set E_b/N_0 to 20 dB
- Set direct path to delay 0, amplitude 1, angle 0
- Enable multipath
- Set reflected path delay and amplitude
- Loop through delayed path phase
 - 0 degrees to 360 degrees in 10 degree steps
 - Record DQM at each step, or record BER and calculate DQM
 - Plot DQM versus phase in polar form
- Turn equalizer on and repeat
 - If two test units are available, test EQ on and EQ off at the same time

Grading the Tests

- Measure BER with EQ on and off, then compute DQM
 - If your DQM is well calibrated, measure DQM directly
- Plot DQM vs. delay path phase, in polar form
 - Radius = DQM
 - Angle = phase of delayed path
- Result will be a distorted "hoop"
 - Bigger radius is better
 - Some angles will be worse than others
- Compute the area of each "hoop" for EQ on and off
- "Equalizer Benefit" = Area_{on} Area_{off}
 - Since the radius is (essentially) the logarithm of the BER, the difference is the number of orders of magnitude improvement in BER

DQM Calibration

No Multipath, No Problem

PCMEM

30

5

58

MP Off **Restore Defaults** Power Correction Method Tpwr = RF Level Mag 1 = RF Level Total Power in each channel output at requested RF Level

2

0

500 * 0

 \checkmark

 \checkmark

*

3

0

PCMFM

Step

0.100

30

5

*

÷

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

2

0

500 * 0

 \checkmark

 \checkmark

*

3

0

PCMFM

Step

0.100

30

5

*

60

Multipath Normal Setup 1 2 3 \checkmark PCMFM Step 0.000 0.000 0.000 0.000 0.000 0.100 * * **60** + 0 0 30 + ÷ 100 + 500 * 0 5 1.000 + 0.900 + 0.500 + 0.000 + 0.100 \square \checkmark \square \checkmark MP Off **Restore Defaults** Power Correction Method Tpwr = RF Level Mag 1 = RF Level Total Power in each channel output at requested RF Level

61

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

1

 \checkmark

90 + 0

100 + 500 * 0

 \square

 \square

MP Off

Restore Defaults

2

 \checkmark

 \checkmark

*

3

0

N 4 🕨

PCMFM

Step

0.100

30

5

*

2

 \checkmark

 \checkmark

+ 0

+ 500 * 0

MP Off

*

3

0

PCMFM

Step

0.100

30

5

*

63

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

1

 \checkmark

 \square

 \square

+ 0

+ 500 * 0

MP Off

2

 \checkmark

 \checkmark

*

3

0

PCMFM

Step

0.100

30

5

*

64

1

 \checkmark

180 + 0

100 + 500 * 0

 \square

 \square

MP Off

2

 \checkmark

 \checkmark

*

3

0

N 4 🕨

PCMFM

Step

0.100

30

5

*

65

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

2

 \checkmark

 \checkmark

+ 0

+ 500 * 0

MP Off

*

3

0

N 4 🕨

PCMFM

Step

0.100

30

5

*

66

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

2

 \checkmark

 \checkmark

+ 0

+ 500 * 0

MP Off

*

3

0

PCMFM

Step

0.100

30

5

*

67

Multipath Normal Setup 2 3 1 \square PCMFM Step 0.000 + 0.000 + 0.000 + 0.000 + 0.100 + 270 + 0 _____ ▼ 0 + 30 • + 100 ÷ 500 + 0 5 1.000 📮 0.900 🗧 0.500 ÷ 0.000 ÷ 0.100 \square \checkmark \square \checkmark MP Off **Restore Defaults** Power Correction Method Towr = RF Level O Mag 1 = RF Level Total Power in each channel output at requested RF Level

68

BER Swp Mod Index Sync Time Brk Freq Multipath Setup Lists ATP GP_NF ACI N 4 🕨 Multipath Normal Setup 1 2 3 \checkmark PCMFM Step 0.000 0.000 0.000 0.000 0.000 0.100 + * * 300 + 0 0 30 ÷ 100 + 500 * 0 5 1.000 + 0.900 + 0.500 + 0.000 + 0.100 \square \checkmark \square \checkmark MP Off **Restore Defaults** Power Correction Method Tpwr = RF Level Mag 1 = RF Level Total Power in each channel output at requested RF Level

69

R Swp Mod I	ndex Sync	Time	Brk Freq	Mult	tipath Setup	l	ists ATP	0	BP_NF ACI		
Multipath Normal Setup											
			•								
lay	0		1		2		3				
ource(s)										
odulator 0									PCMF	м	
odulator 1											
odulator 2											
odulator 3											
ffect(s)									Step		
eq (Hz)	0.000	•	0.000	•	0.000	▲ ▼	0.000	•	0.100		
hase (deg)	0	÷	330	•	0	•	0	•	30	ĺ	
elay (ns)	0	÷	100	^	500	^	0	•	5		
el Mag	1.000	÷	0.900	•	0.500	•	0.000	•	0.100		
Destination(s)											
н1					\checkmark						
H2	\checkmark				\checkmark						
MP Off											
	_										
Restore Defaults											
			0								
Power Correction Method Towr = RF Level											
O Mag 1 = RF Level											
Total Power in each channel output at requested RF Level											

70

Multipath Normal Setup 1 2 3 \checkmark PCMFM Step 0.000 + 0.000 + 0.000 + 0.000 + 0.100 + * * 360 + 0 0 30 ÷ 100 + 500 * 0 5 1.000 + 0.900 + 0.500 + 0.000 + 0.100 \square \checkmark \square \checkmark MP Off **Restore Defaults** Power Correction Method Tpwr = RF Level Mag 1 = RF Level Total Power in each channel output at requested RF Level

2

0

500 * 0

 \checkmark

 \checkmark

*

3

0

N 4 🕨

PCMFM

Step

0.100

30

5

*

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Multipath Normal Setup

1

 \square

100 ÷ 500 + 0

0.600 ≑

 \square

 \square

MP Off

Restore Defaults

Power Correction Method Towr = RF Level O Mag 1 = RF Level

+ 180 + 0 _____ ▼ 0 + 30

•

2

0.500 ≑

 \checkmark

 \checkmark

3

PCMFM

Step

0.100

5

+

0.000 🗧 0.100

72

73

Multipath Normal Setup 2 3 1 \square PCMFM Step 0.000 + 0.000 + 0.000 + 0.000 + 0.100 + 180 + 0 ***** 0 • 30 * + 100 -500 5 ÷ 0 1.000 0.700 0.500 0.000 🗧 0.100 \checkmark \checkmark \checkmark \checkmark MP Off **Restore Defaults** Power Correction Method Tpwr = RF Level Mag 1 = RF Level Total Power in each channel output at requested RF Level

74

BER Swp	Mod Ir	ndex Sync	Time	Brk Freq	Mult	tipath Setup	L	ists ATP	0	ACI	
		1	Mu	ıltipath	N	ormal S	Set	up			
				•				•			
Ray		0		1		2		3			
Sour	ce(s	5)									
Modulat	or 0									PCMF	м
Modulat	or 1										
Modulat	or 2										
Modulat	or 3										
Effec	t(s)									Step	
Freq (Hz	z)	0.000	•	0.000	•	0.000	•	0.000	•	0.100	
Phase (deg)	0	•	180	•	0	•	0	•	30	
Delay (n	ns)	0	•	100	•	500	•	0	•	5	
Rel Mag) [1.000	•	0.800	•	0.500	•	0.000	•	0.100	
Desti	inati	on(s)									
CH1						\checkmark					
CH2		\checkmark									
				м	РС	Off					
				Restor	e C	Defaults					
			2011	or Corro	otic	on Motho	4				
			D T	pwr = RF	Le	evel	u				
		C	M	lag 1 = R	FL	evel					
-											
Tota	al Pov	wer in ea	ich	channel	ou	tput at re	equ	ested RF	· Le	evel	

75

1

 \checkmark

180 + 0

100 + 500 * 0

 \square

 \square

MP Off

Restore Defaults

2

 \checkmark

 \checkmark

*

3

0

PCMFM

Step

0.100

30

5

*

÷

76

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

1

 \checkmark

180 + 0

100 + 500 4 0

 \square

 \square

MP Off

Restore Defaults

* *

2

 \checkmark

 \checkmark

*

3

0

N 4 🕨

PCMFM

Step

0.100

30

5

*

÷

77

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

1

 \checkmark

180 + 0

100 + 500 4 0

 \square

 \square

MP Off

Restore Defaults

2

 \checkmark

 \checkmark

*

3

0

N 4 🕨

PCMFM

Step

0.100

30

5

*

÷

	I	Mu	ıltipath	N	ormal S	et	up		
Ray	0		1		2		3		
Source(s)								
Modulator 0									PCMF
Modulator 1									
odulator 2									
Modulator 3									
Effect(s)									Step
req (Hz)	0.000	•	0.000	•	0.000	•	0.000	•	0.100
hase (deg)	0	•	180	•	0	•	0	•	30
)elay (ns)	0	•	100	•	500	•	0	•	100
Rel Mag	1.000	-	0.900	•	0.500	•	0.000	•	0.100
Destinat	ion(s)								
CH1									
CH2	\checkmark								
			м	РC	Off				
			Restor	e [Defaults				
			er Corre	ctio	on Metho	d			
	_ F	-04							
	- I ()	D T	pwr = RF	Le	evel				

180-150-0.9

BER Swp	Mod Ir	ndex Sync	Time	Brk Freq	Mult	tipath Setup	L	ists ATP	0	GP_NF ACI		
			Mu	ultipath	N	ormal S	Set	up				
								-F				
Ray		0		1		2		3				
Sour	cels	5)										
Modulat	or 0	- ,								PCMFM		
Modulat	or 1											
Modulat	or 2											
Modulat	or 3											
Effec	:t(s)									Step		
Freq (H:	z)	0.000	^	0.000	•	0.000	•	0.000	•	0.100		
Phase (deg)	0	•	180	▲ ▼	0	•	0	▲ ▼	30		
Delay (r	ns)	0	^	150	•	500	•	0	•	50		
Rel Mag	, [1.000	-	0.900	•	0.500	•	0.000	•	0.100		
Dest	inati	on(s)										
CH1												
CH2		\checkmark										
				м	РQ	Off						
				Restor	e C	Defaults						
		-1	Pow	ver Corre	ctie	on Metho	d –					
		(DТ	pwr = RF	Le	evel	•					
		C	M	lag 1 = R	FL	evel						
Tet	al Der	war in an	t	channel		tout at		ontod DE				
1018	a P0	ner m ea	icn	channel	ou	ipul al fe	-qu	estea Rr	L	ever		

180-200-0.9

80

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

2

 \checkmark

 \checkmark

+ 0

+ 500 4 0

MP Off

*

3

0

N 4 🕨

PCMFM

Step

0.100

30

50

*

•

180-250-0.9

R Swp Mod	Index Sync	lime	e Brk Freq	MUI	ipath Setup		ists AIP	0	aP_NF ACI	ſ
	I	Mu	ultipath	N	ormal S	Set	up			
Ray	0		1		2		3			
Source(s)									
lodulator 0	\checkmark								PCM	м
lodulator 1										
lodulator 2										
lodulator 3										
Effect(s)									Step	
req (Hz)	0.000	•	0.000	•	0.000	•	0.000	•	0.100]
hase (deg)	0	•	180	•	0	•	0	•	30]
elay (ns)	0	•	300	•	500	•	0	•	50]
lel Mag	1.000	•	0.900	•	0.500	•	0.000	•	0.100]
Destinat	ion(s)									
H1	\checkmark				\checkmark					
H2	\checkmark		\checkmark		\checkmark					
	_									
			м	Р	Off					
			Restor	ъ Г)ofaults					
			Restor							
	F	Pov	ver Corre	ctio	on Metho	d				
		T U	pwr = RF Mag 1 = R	E I	evel					
			ug 1 - 11							
Total Po	werinea	ich	channel	ou	tput at re	equ	ested RI	FLe	evel	

180-300-0.9

82

BER Swp	Mod Inde	x Sync	Time	Brk Freq	Mult	tipath Setup	L	ists ATP	0	ap_NF ACI	
			Mu	ltipath	N	ormal S	Set	un			
								F			
Ray		0		1		2		3			
Sour	ce(s)										
Modulat	or 0									PCMF	м
Modulat	or 1										
Modulat	or 2										
Modulat	or 3										
Effec	:t(s)									Step	
Freq (Hz	z) (0.000	•	0.000	•	0.000	•	0.000	•	0.100	
Phase (o	deg)	0	•	180	•	0	•	0	•	30	
Delay (n	ns)	0	•	500	^	500	+	0	▲ ▼	100	
	1	000		0.900		0 500	^	0.000	+	0.100	
Rel Mag			•	0.000	_						
Rel Mag	inatio	n(s)	•	0.000	•						
Rel Mag Desti	inatio	n(s) ☑	•								
Rel Mag Desti CH1 CH2	inatio	n(s) ☑	•		·						
Rel Mag Desti CH1 CH2	inatio	n(s) ☑		2	·						
Rel Mag Desti CH1 CH2	inatio	n(s) 2		2.000 2 M	P(∑ff					
Rel Mag Desti CH1 CH2	inatio	n(s) 2 2		⊻ ⊻ M	Р (
Rel Mag Desti CH1 CH2	inatio	n(s)	v	⊻ ⊻ M	Р (∑ Mf					
Rel Mag Desti CH1 CH2	inatio	n(s) 2		V V M Restor	P (⊘ Dff Defaults					
Rel Mag Desti CH1 CH2	inatio	n(s)		M Restor	P (⊘ Dff Defaults					
Rel Mag Desti CH1 CH2	inatio	n(s)	Pow D	M Restor pwr = RF	P (e [ctic	⊘ Dff Defaults Don Metho evel	d				
Rel Mag Desti CH1 CH2	inatio	n(s)	Pow D T D M	M Restor ver Corre pwr = RF ag 1 = R	P(ections : Le :FL	Diff Defaults Don Metho evel evel	d				

180-500-0.9

BER Swp Mod I	ndex Sync Tim	e Brk Freq	Mult	tipath Setup	li	ists ATP	0	SP_NF ACI	
Ber Swp Mod Index Sync Time Bek Freq Multipath Setup Lats ATP GP_NF ACI M · · · · · · · · · · · · · · · · · · ·									
Ray	0	1		2		3			
Source(s)								
Modulator 0								PCMF	M
Modulator 1									
Modulator 2									
Modulator 3									
Effect(s)								Step	
Freq (Hz)	0.000	0.000	▲ ▼	0.000	•	0.000	•	0.100	
Phase (deg)	0	180	^	0	+	0	•	30	
Delay (ns)	0	500	•	500	÷	0	•	100	
Rel Mag	1.000 🛟	0.900	•	0.500	÷	0.000	•	0.100	
Destinati	ion(s)								
CH1				\checkmark					
CH2	\checkmark								
		м	PO	Dff					
		Restor	e C	Defaults					
	Bo	nor Corro	ctiv	on Motho	d –				
	e ا	pwr = RF	E Le	evel					
	\bigcirc N	l ag 1 = R	RE L	evel					
Total Do	war in anah	channal		tout of ro		optod DE		a vol	
	wei in edch	channel	ou	ιμαι αι Γθ	qu	esteu Rr	E		

84

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

1

 \square

 \square

 \square

MP Off

4 0 * 0 + 30

2

500 + 0 +

0.500 ≑

 \checkmark

 \checkmark

3

N 4 🕨

PCMFM

Step

0.100

100

0.000 🗧 0.100

180-2000-0.9

ionp mour	index offic		Direction		· · · · · ·					
	I	Mu	ultipath	N	ormal S	Set	up			
lay	0		1	2		3				
ource(s)									
odulator 0							PCMFM			
odulator 1										
odulator 2										
odulator 3										
ffect(s)									Step	
req (Hz)	0.000	•	0.000	•	0.000	•	0.000	•	0.100	
hase (deg)	0	•	180	•	0	•	0	•	30	
elay (ns)	0	•	2000	•	500	•	0	•	100	
el Mag	1.000	•	0.900	•	0.500	•	0.000	•	0.100	
)estinati	ion(s)									
H1	\checkmark									
H2	\checkmark									
			м	РC	Dff					
			Restor	e [Defaults					
	⊢ F	o	ver Corre	ctio	on Metho	d				
	C	T	pwr = RF	Le	evel					
	C) N	lag 1 = R	FL	evel					
Total Po	werinea	ch	channel	ou	tout at re	an	ested RF	Le	evel	
				-				-		

10 Mbps SOQPSK, 1 bit Delay

10 Mbps SOQPSK, 2 Bits Delay

10 Mbps SOQPSK, 5 Bits Delay

10 Mbps SOQPSK, 10 Bits Delay

10 Mbps SOQPSK, 20 Bits Delay

What About Dynamics?

- Most pronounced effect of target motion is variation in phase of the reflected path
 - Manifests as spectral nulls sweeping through spectrum
- Proposal:
 - Stress the equalizer by sweeping the null faster and faster, until the EQ benefit starts to drop.
 - Similar to the Break Frequency test for combiners
- Figure of merit becomes the "Break Frequency" of the equalizer

What Can we Measure?

- Measure the BER, averaged over all phases
 - Correlates with moving test article
 - Convert to DQM
 - Or measure DQM, but average it correctly (see next slide)
- For consistency with the static plots, plot DQM versus "spin rate"
- Plot multiple delay path amplitudes on one chart
- Separate charts for each delay value

Equalizer Break Frequency

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Quasonix

Best Channel Selector (BCS)

Handling the "Un-Combinable" Signals

CH2

Data

- Polarization, frequency, or short-range spatial diversity
- Maximal Ratio Combiner sums input channels proportional to their SNR

Demod

- Optimal in additive white Gaussian noise (AWGN) up to 3 dB gain
- Use as only receiver output?

RF

Down-

Conversion

CH 2

RF

Quasonix

Receive

Combiner Structure

• Maximal ratio combining

Combiner Performance

• Maximal ratio combining issues

- Inaccurate SNR estimation: multiple signal copies, little or no noise
- Degraded time and phase alignment
- Downstream demodulator must deal with **all** received reflections

Combiner Performance

• Maximal ratio combining issues

Inaccurate SNR estimation: overwhelm estimator with strong undesired signal

Combiner Performance

Maximal ratio combining issues

• Propagation effects may result in non-combinable signals

Receive Diversity – BCS

- Like a mini-BSS *inside the receiver*
- Selects and outputs best data from just three sources (Channel 1, Channel 2, and Combiner)
- Optimized for this narrowly scoped role

BCS Structure

• 3-channel correlating selection

"hit-less" - no dropped or duplicated bits

BCS Test – Multipath

- Apply severe multipath, engage adaptive equalization
- BCS outperforms all channels

BCS Test – Multipath

- DQM reduction of 1 = BER increase of 10x (!)
- BCS selection > 1000x faster than display

BCS Test – Summary

• Uniformly equals or exceeds best channel's performance

Conclusions

- Combiner best most of the time, but not always
- BCS mitigates cases where Combiner falls short
 - Uses DQM to form reliable selection criterion
 - Dynamically selects best data from Channel 1, Channel 2, or Combiner
 - Preserves combiner gain in AWGN
 - Supplements combiner in multipath, interference, etc.
 - Generates output with accurate composite DQM
 - Provides single output from dual-channel receiver that reliably supplies data superior to best channel, including Combiner
- BCS does not replace BSS
 - BCS has great performance local to one receiver
 - BSS extends performance range-wide with multiple receive sites

Quasonix

Best Source Selection

Combining Multiple Sources

- Receive and demodulate the same signal at multiple receive sites
- Funnel all the demodulated data to one central location
- Time align the multiple data streams
- Build a better output stream from the multiple input streams

Selection Algorithms

• Majority vote

- Reasonably effective with three or more sources
- Reduces to guesswork with only two sources
- Sub-optimal for any number of sources

• PCM frame header accuracy

- Uses only a small fraction of the bits to make an estimate
- Poor resolution (BER is typically measured as Num_errors ÷ 32)
- Useless with encrypted data

Log-likelihood ratio

- Uses all the bits
- Works with encrypted data
- Max-likelihood (optimal) combining scheme
 - Rice, Michael and Perrins, Erik. "Maximum Likelihood Detection From Multiple Bit Sources", Proceedings of the International Telemetering Conference, Las Vegas, NV, USA, 2015.

Why Measure Data Quality?

- Telemetry links suffer from a wide range of impairments
 - Noise
 - Interference
 - Multipath
 - Shadowing
 - Loss of antenna track
- We need a way to asses the impact of *all* these impairments
- We need to compute p_n
 - Quickly
 - Accurately

$$\begin{aligned} \hat{x} &= 0 \iff \prod_{n \in \mathcal{N}_0} p(y_n | x = 0) \prod_{n \in \mathcal{N}_1} p(y_n | x = 0) > \prod_{n \in \mathcal{N}_0} p(y_n | x = 1) \prod_{n \in \mathcal{N}_1} p(y_n | x = 1) \\ \iff \prod_{n \in \mathcal{N}_0} (1 - p_n) \prod_{n \in \mathcal{N}_1} p_n > \prod_{n \in \mathcal{N}_0} p_n \prod_{n \in \mathcal{N}_1} (1 - p_n) \\ \iff \log \left(\prod_{n \in \mathcal{N}_0} (1 - p_n) \prod_{n \in \mathcal{N}_1} p_n \right) > \log \left(\prod_{n \in \mathcal{N}_0} p_n \prod_{n \in \mathcal{N}_1} (1 - p_n) \right) \\ \iff \sum_{n \in \mathcal{N}_0} \log(1 - p_n) + \sum_{n \in \mathcal{N}_1} \log(p_n) > \sum_{n \in \mathcal{N}_0} \log(p_n) + \sum_{n \in \mathcal{N}_1} \log(1 - p_n) \\ \iff \sum_{n \in \mathcal{N}_0} \log(1 - p_n) - \sum_{n \in \mathcal{N}_0} \log(p_n) > \sum_{n \in \mathcal{N}_1} \log(1 - p_n) - \sum_{n \in \mathcal{N}_1} \log(p_n) \\ \iff \sum_{n \in \mathcal{N}_0} \log \left(\frac{1 - p_n}{p_n} \right) > \sum_{n \in \mathcal{N}_1} \log \left(\frac{1 - p_n}{p_n} \right). \end{aligned}$$

Rice, Michael and Perrins, Erik. "Maximum Likelihood Detection From Multiple Bit Sources", Proceedings of the International Telemetering Conference, Las Vegas, NV, USA, 2015.

Terminology

- BER (Bit Error Rate)
 - *Measured* as (number of errors / number of bits)
 - Assumes you know the data in advance
 - Measuring very low BER requires a long time
 - Converges to BEP if test runs long enough, and channel is static
- BEP (Bit Error Probability)
 - Calculated likelihood that a bit is in error
 - Even very low BEP can be determined from only a few bits
- DQM (Data Quality Metric)
 - Derived directly from BEP
 - Expressed as a 16-bit integer
- DQE (Data Quality Encapsulation)
 - Process of "bundling" DQM words and payload data
 - Includes a sync word to identify the start of the DQE frame

Data Quality Encapsulation

- Payload data is bundled with its DQM, to give Best Source Selectors a valid basis for "best"
- Interoperability among vendors requires standards
 - DQM calibration against multiple signal impairments
 - DQE packet structure
- Quasonix has developed and shared an open DQM/DQE format
 - Published at ITC 2015
 - License-free, royalty-free
 - RCC standard as of IRIG 106-17, Chapter 2, appendix G
- Includes test procedures to evaluate DQM accuracy

Does it work?

- Four "poor" channels for input to BSS
- One nearly error-free output from BSS

BSS Summary

- Correlating (time-aligning) source selectors deliver output data that is better than any single input stream
- Combats all forms of signal impairment
 - Noise
 - Multipath
 - Interference
 - Shadowing
 - Loss of antenna track
- Diversity can be in any form
 - Polarization
 - Frequency
 - Spatial
- DQE / DQM equip the BSS to make optimal decisions

Rx/Tx DSP Techniques

- If you can choose your transmitter...
- Space-time coding (STC)
 - Mitigates "built-in" multipath from dual TX antennas
 - Requires dual transmitters
- Forward error correction
 - Spending bandwidth to buy link margin
 - Requires encoder implemented in transmitter

Quasonix

Space-Time Coding

Eradicates Porcupines!

Difficulties with TX Diversity

Spatially Separated Antennas Create Interference Pattern

Alamouti Space-Time Coding (STC)

Symbol Error Rate - QPSK

Traditional signaling

$$P(E \mid \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} 2Q \left(\sqrt{\frac{E_s}{N_o} \frac{\left| h_1(\theta, \phi) + h_2(\theta, \phi) \right|^2}{2}} \right) d\phi$$

Addition of transfer functions leads to reduction in effective SNR

For Alamouti signaling

$$P(E \mid \theta) = \frac{1}{2\pi} \int_{0}^{2\pi} 2Q \left(\sqrt{\frac{E_s}{N_o} \frac{\left| h_1(\theta, \phi) \right|^2 + \left| h_2(\theta, \phi) \right|^2}{2}} \right) d\phi$$
 Only magnitudes of transfer functions used in sum

Antenna Pattern Interpretation

Consider BPSK Signaling and Assume $s_1 = s_2 = 1$

Time Slot 1: Gain Pattern: $G_{t1}(\phi) = 2\cos^2\left[\frac{kd}{2}\cos\phi\right]$

Time Slot 2: Gain Pattern: $G_{t2}(\phi) = 2\sin^2 \left[\frac{kd}{2} \cos \phi \right]$

Quasonix

.30

330

0

SER Simulations

Circular Polarization Diversity Reception

Results Identical to Single Receive Antenna System

C-12 Beechcraft: Airborne Platform

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

. .

STC Video Clip

Terry Hill - thill@quasonix.com 12

STC Summary

- Dual-Antenna Diversity Scheme
- Removes dropouts created by multiple transmit antennas
 - SNR equivalent to single antenna transmission
 - Multi-antenna scheme alleviates masking during maneuvering
 - Can be used with diversity reception
- Realtime hardware flight tested at Edwards AFB and showed substantial performance benefit

M1: Test Results

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com 12

_

M2: Test Results

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com 12

_

M3: Test Results

M4: Test Results

M3 to C2 Transition Test Results

C2: Test Results

D2: Test Results

STC Summary

Dual-Antenna Diversity Scheme

- Removes interference created by multiple transmit antennas
 - SNR equivalent to single antenna transmission
 - Multi-antenna scheme alleviates masking during maneuvering
 - Can be used with diversity reception
- Realtime hardware flight tested at Edwards AFB and showed substantial performance benefit

Quasonix

Forward Error Correction

Forward Error Correction

- Basic premise
 - Insert redundant bits into transmitted stream
 - Use known relationships between bits to correct errors
- Countless schemes have been developed
 - Convolutional code / Viterbi decoder
 - Block codes
 - BCH
 - Reed-Solomon
 - Concatenated codes
 - RS / Viterbi
 - Turbo product codes (TPC)
 - Low Density Parity Check (LDPC)

LDPC Codes - History

- LDPC: Low Density Parity Check
- Linear block codes
 - Some are systematic
- Developed by Robert G. Gallager at M.I.T. in 1960
 - Published by the M.I.T Press as a monograph in 1963
- No practical implementations at that time
- Re-discovered by David J.C. MacKay in 1996
 - Began displacing turbo codes in the late 1990s
- Recent history
 - 2003: LDPC code selected for the new DVB-S2 standard for the satellite digital TV
 - 2006: LDPC code selected for 10GBase-T Ethernet (10 Gbps over twisted-pair cables)
 - 2007: LDPC codes published by CCSDS as an "Orange Book"
 - 2008: LDPC code selected for the ITU-T G.hn standard
 - 2009: LDPC codes adopted for Wi-Fi 802.11 High Throughput (HT) PHY specification
 - 2012: LDPC code selected for integrated Network Enhanced Telemetry (iNET)

LDPC AR4JA Codes

- AR4JA: Accumulate-Repeat-4-Jagged-Accumulate
- Published by CCSDS as an "Orange Book"
 - Low Density Parity Check Codes For Use in Near-Earth and Deep Space Applications
- Defines a family of systematic LDPC codes

	Code block length <i>n</i>			
block length k	rate 1/2	rate 2/3	rate 4/5	
1024	2048	1536	1280	
4096	8192	6144	5120	
16384	32768	24576	20480	

- Defines attached sync markers (ASM)
 - Specified in section 6 of CCSDS Recommended Standard CCSDS 131.0-B-1
- Present work based on the (6144, 4096) code

Packet Assembly

- Input 4096 data bits
 - Randomize prior to encoding, if necessary
- Compute and append 2048 parity bits
- Prepend 256-bit attached sync marker (ASM)
 - Yields a 6400-bit packet
 - Each and every code word carries the ASM: A, A, Ā, A
 - A = FCB88938D8D76A4F
 - Ā = 034776C7272895B0
 - Synchronization requires at most one code word

AĀA4096 Data Bits2048 Parity bits

Spectral Characterization

Quasonix

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Fractional Out-of-Band Power

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Decoder

Demodulate SOQPSK with soft decisions

- Implemented 8-bit decisions
 - Iterative decoders work best with high resolution soft decisions
- Estimate E_b/N_0 for soft decision scaling
- Correlate for ASM with hard decisions
 - Resolves the 4-ary phase ambiguity in SOQPSK
 - Virtually certain sync at $E_b/N_0 = 0 dB$
- Initialize decoder
- Execute decode iterations until next code word
 - Coding gain varies with bit rate

Measured BER Results

LDPC from Appendix 2-D

Quasonix

Table D-11. Bandwidth Expansion Factor					
Information Block	Bandwidth Expansion Factor				
Length, k	Rate 1/2	Rate 2/3	Rate 4/5		
1024	33/16	25/16	21/16		
4096	33/16	25/16	21/16		

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com
BER – All Modes

Conclusions

- Rate 2/3 LDPC code yields ≈9 dB coding gain relative to uncoded SOQPSK
 - ± 0.5 dB, depending on data rate
- 256-bit ASM provides reliable, fast synchronization at Eb/N0 < 0 dB
 - Synchronization is consistently achieved in < 4096 data bits
- Bandwidth expansion of 25/16
 - Still 22% less bandwidth than legacy PCM/FM
- SOQPSK with LDPC offers a reasonable trade of spectral efficiency for a significant gain in detection efficiency
- 5 other LDPC codes offer similar trade of bandwidth for BER performance

Quasonix

How Well Does It All Work Together?

Yuma Proving Grounds, AZ Feb 8-11, 2016

Recipe for Delivering Every Bit

- Space Time Coding (STC)
 - Eliminates aircraft pattern nulls
- Low Density Parity Check (LDPC) coding
 - Improves margin, stops "dribbling errors"
- Adaptive Equalization (for non-STC signals)
 - Mitigates multipath
- Spatial diversity with correlating source selection
 - Eliminate coverage-based dropouts
 - Requires DQE/DQM for optimal operation
 - TMoIP makes delivery easy

Multiple Receiving Sites

Dual Transmitter – S band – 10 W each output

Installed in UH-1 (Huey) helicopter with top and bottom blade antennas

Las Vegas, NV • 24 October 2019 Terry Hill - thill@quasonix.com

Analysis using Data Logs

- Transmit F1-Top, F2-Bottom
- 3 Receive Sites
- 6 Clock & Data streams provided to A-CSS with Data Quality Encapsulation (DQE)
- DQE = Receiver inserts periodic estimate of instantaneous BEP
- Items of interest
 - Top vs Bottom Antenna
 - Individual Site Performance
 - Source Selector Performance

Flight 1 – PCM/FM 5 Mbps Link Availability Summary (PN23 BER)

Flight 2 – SOQPSK 5 Mbps Link Availability Summary (PN23 BER)

Flight 3 – SOQPSK 20 Mbps Link Availability Summary (PN23 BER)

Flight 4 – STC/LDPC 5 Mbps Link Availability Summary (PN23 BER)

The elusive zero-error link.....

- STC/LDPC from 3 sites at 5 MBPS
- 1st pass PN23 -- 34 minutes of helicopter flight across YPG...
- Error-free!
- 2nd pass video with no freeze ups or blackouts!

Acknowledgements

- Mark Geoghegan, Quasonix
- Dr. Michael Rice, Brigham Young University
- Bob Jefferis, Tybrin, Edwards AFB
- Kip Temple, ARTM, Edwards AFB
- Gene Law, NAWCWD, Pt. Mugu
- Vickie Reynolds, White Sands Missile Range

Questions/Comments

