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Course Outline

 Receiver-Only DSP
 Trellis Demodulation
 Diversity Combining
 Data Quality Metric / Data Quality Encapsulation
 Adaptive Equalization
 Best Channel Selection
 Best Source Selection

 RX/TX DSP
 Space-Time Coding
 Forward Error Correction (FEC)

 Using All the Tools Together
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Receiver-Only DSP Techniques
 Receive-side processing, no transmitter impact
 Trellis demodulation
 Maximal ratio combining – optimal against AWGN

 Polarization diversity
 Frequency diversity

 Data Quality Metric (DQM) / Data Quality Encapsulation (DQE)
 IRIG 118-22, Chapter 11

 Adaptive equalization
 Powerful tool against multipath

 Best channel selection
 Handles the “non-combinable” cases

 Best source selection
 Combats all forms of signal impairment



Trellis Demodulation
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Demodulation

 As the shop manual says, “Installation is reverse of 
removal.”

 Demodulation is intrinsically more difficult than 
modulation
 Unknown carrier frequency
 Unknown carrier phase
 Unknown clock frequency and phase
 Signal corruption

 Noise 
 Interference
 Multipath
 Doppler shift

 Multiple techniques can be applied
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 Tier 0
 Legacy (nearly exclusive in 20th century)
 Simple to build
 Robust to signal defects and channel impairments
 ~3.5 to 5 dB short of theoretical limit

 Tier I
 Requires optimization for SOQPSK
 Weakly synchronized
 Requires high SNR for acquisition
 ~1.0 to 1.5 dB short of theoretical limit

 Tier II
 No practical single-symbol detectors

Single-Symbol Demodulation
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 Tier 0
 Invented in 1974, introduced in 2001

 Osborne & Luntz, “Coherent and Noncoherent Detection of CPFSK”, IEEE T-COM, August 1974

 Requires significant signal processing power
 Signal defects and channel impairments require attention

 DSP techniques can be applied to solve these issues

 Operates within 0.2 dB of theoretical limit

 Tier I
 Strong, rapid synchronization
 Operates within 0.2 dB of theoretical limit

 Tier II
 Mandatory for practical implementation

Trellis Demodulation Overview
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Tier 0 Phase Tree
h = 0.7

A multi-symbol detector finds the data sequence
that best fits the observed phase trajectory
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Why Does It Matter?

If this bit is different, the phase 
trajectory is forever shifted…

Therefore, later bits can help make 
decisions about earlier bits.Noise-corrupted 

trajectory

Single-symbol detector 
decides “zero”

Multi-symbol detector 
decides “one” –

correcting the error
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BER Performance Comparison

3.5 dB, for free



Diversity Combining
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Maximal Ratio Combining
 Many telemetry systems utilize diversity reception

 Frequency separation using two transmitter
 Orthogonal polarizations using cross-polarized antenna feeds

 Combining two (or more) copies of the same signal
 Diversity combining
 Creates a third signal to be demodulated
 BER performance of third signal is better than either of the individual signals

 Special case – the leading use of diversity
 Linearly polarized transmit antenna on test article – could be at any orientation
 Left-hand and right-hand circularly polarized receive antennas
 Each receive antenna loses half the transmit power
 Diversity combiner puts it all back together, eliminating the polarization loss
 Frequency diversity works the same way, but uses twice the bandwidth
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Maximal Ratio Combining

 Weight each signal in proportion to its SNR and add
 Yields optimum SNR on combined channel in AWGN
 SNRcombined = SNRa + SNRb
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Maximal Ratio Combining

 Jump to 
file://localhost/Users/TerryHill/Documents/Quasonix/ITC 
2015/Diversity Combiner.avi
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BER Results - Fading Signals
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Measured Combiner BER - Tier 0
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Measured Combiner BER - Tier I
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Measured Combiner BER - Tier II
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Combiner Summary
 Receive-side processing

 No transmitter impact

 Phase aligns the signals
 Forms weighted sum of two inputs
 SNR of the weighted sum is at least as high as the better signal
 May be as much as 3 dB higher (equal input case)
 Conventional combiner design assumes signals are time-aligned

 Performance falls off rapidly with increasing time skew
 Combiner will probably fail altogether at ± ½ bit time skew

 Some combiners do both phase alignment and time alignment
 Supports operation with spatially separated antennas

 If you have access to two copies of the signal, use them!



Data Quality Metric (DQM)
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How to Assess Data Quality
 Measured BER is not practical

 Requires known data in the stream – not possible with encryption
 Takes a long time to measure low BERs

 Bit error probability (BEP), however…
 Does not require any known data
 Can be determined quickly and accurately from demodulator statistics
 Is an unbiased quality metric, regardless of channel impairments
 When calibrated per a standardized procedure, DQM based on BEP allows DQE 

from multiple vendors to interoperate

 Each vendor can use their own algorithm for developing BEP
 DQM is calculated directly from BEP

 Use of Likelihood Ratio leads to maximum likelihood BSS algorithms
 Converted to 16-bit integer on log scale
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Definition of DQM
 Start with BEP, derived within demod
 Likelihood Ratio (LR) = (1 - BEP) / BEP
 DQM = min (round (log10 (LR) / 12 * (2^16)), 2^16 -1)

 16-bit unsigned integer, ranges from 0 to 65,535

 Easily reversed:
 LR = 10^(-12 * DQM / 2^16)
 BEP = 1 / (1 + LR)

 Define “Q” as the “User’s DQM”
 Q = 12 * DQM / 65535
 Represents the exponent of 10 in the BEP
 Examples:

 Q = 3  BEP = 1e-3
 Q = 7  BEP = 1e-7

 Arbitrarily cap Q at “a perfect 10”.

BEP LR DQM Q
0.5 1.00 0 0.00

1E-01 1.11111E-01 5211 0.95
1E-02 1.01010E-02 10899 2.00
1E-03 1.00100E-03 16382 3.00
1E-04 1.00010E-04 21845 4.00
1E-05 1.00001E-05 27307 5.00
1E-06 1.00000E-06 32768 6.00
1E-07 1.00000E-07 38229 7.00
1E-08 1.00000E-08 43691 8.00
1E-09 1.00000E-09 49152 9.00
1E-10 1.00000E-10 54613 10.00
1E-11 1.00000E-11 60075 10.00
1E-12 1.00000E-12 65535 10.00
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DQE Format

 Header
 16-bit sync pattern (0xFAC4)

 MSB first: 1111101011000100
 8-bit reserved word, potentially for packet header version number (currently 0)
 8-bit reserved word, potentially for source ID tag (currently 0)
 16-bit DQM

 Payload data
 User selectable length, (128 ≤ N ≤ 16,536)
 Defaults to 4096

16-bit
Sync

Pattern 8-
bi

t
W

or
d 16-bit
DQM N bits of payload data (128 ≤ N ≤ 16,536)8-

bi
t

W
or

d
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DQM Parameter Trades

 Choice of N impacts both DQM update rate 
and network efficiency
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Calibration of DQM
 Calibrate DQM under various channel impairments:

 AWGN – static level
 AWGN – dynamic level (step response)
 Dropouts
 In-band and adjacent channel interference
 Phase noise
 Timing jitter
 Static multipath

 Test procedures are being developed to evaluate accuracy of DQM
 Targeted for inclusion in IRIG 118
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DQM Calibration Fixture
 Synthesize “impaired” RF signal
 Recover the “corrupted” data (with clock)
 Extract the frame sync word, including DQM
 Measure BER of payload data
 Compare DQM (converted to BEP) to measured BER

 Recorded and stored on a packet-by-packet basis
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DQM Calibration in AWGN
 Required as a baseline for all other tests
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DQM Step Response
 Assesses timeliness of DQM values
 UUT stays synchronized during test

One block  at each step is 
a blend of the two states
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DQM Fade Recovery
 Includes UUT synchronization time
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IRIG 118-22 Chapter 11
 First, DQE frame format must be correct
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IRIG 118-22 Ch. 11
 Defines 6 standard DQM tests
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IRIG 118-22 Ch. 11
 Defines standard test fixture
 Each DQE frame must be scored individually
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Basic AWGN Sweep
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Basic AWGN BER v. BEP
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Step AWGN BER v. BEP
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Not All DQMs are Created Equal
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BER v. BEP in Multipath



Adaptive Equalization
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Multipath is Ugly

 Equalization can turn 

 this            into…      this.

Actual multipath from aircraft on 
the tarmac at Edwards AFB
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Adaptive Equalization

 Consider the multipath channel to be a filter
 Varies over time

 Consider building a filter which “undoes” the 
filtering imposed by the channel
 Let it keep track of the the channel and continuously adapt itself 

to the channel

 Presto!  You have an adaptive equalizer
 Can repair damage done by multipath
 Works with a single receiver
 Requires no bandwidth expansion
 Requires no changes to the transmitter
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Equalizer Techniques

J.G. Proakis, Digital 
Communications.  
1989 2nd Edition
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Generic Adaptive Equalizer

Equalizer Decision
Device

Equalizer
Adjustment

Error
Calculation

Training
Sequence

Symbol
Statistics

Training Mode Blind Mode

Decision-Directed Mode

Transmitted 
Signal

Received 
Signal Recovered

Data

Equalized
Signal

Error

Tap Weights

RF
Channel
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Equalizer Adaptation
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Adaptive Equalizer in Action
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Adaptive Equalizer Summary
 Adaptive equalizer can “undo” multipath distortion
 Requires no changes at the transmit end

 If available, a training sequence can be helpful

 Effectiveness of equalizer depends on the severity of the 
multipath

 Well-designed equalizers monitor their own performance, and 
disengage when they are doing badly.
 This must be done without losing bit count integrity

 If you have multipath, use an equalizer!



Performance Evaluation of 
Adaptive Equalizers
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So Many Channels…

 Each path is characterized by
 Delay
 Amplitude
 Phase shift (potentially time-varying)

 2, 3, or more paths
 Modulation matters
 SNR matters
 Need a 10-dimensional universe to plot the 

results
 Way too many test points



Las Vegas, NV • 24 October 2019
Terry Hill - thill@quasonix.com48

Let’s Simplify

 Stick to 2-ray model
 Easy to synthesize
 Still allows a range of channels from easy to impossible
 Maybe we add a third ray for a limited set of tests

 Stick to one SNR
 High enough that the equalizer works on mitigating multipath, not 

rejecting noise
 Not so high that there are never any bit errors
 Should reflect actual use cases
 Propose 20 dB

 Limited set of amplitudes and delays
 Many phase angles
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Proposed Signal Conditions

 Pick a carrier frequency
 How many?
 Nulls “sweep faster” at higher frequencies (dynamic case only)

 20 dB SNR (without multipath)
 Tier 0, I, and II

 Tier 0: 1, 5, 10, 20 Mbps
 Tier I and Tier II: 2, 10, 20, and 40 Mbps

 Areas for further research
 STC – different multipath on each signal, hmmm….
 LDPC – six codes?



Las Vegas, NV • 24 October 2019
Terry Hill - thill@quasonix.com50

Proposed Static Channels

 Channel response depends on
 Carrier frequency,
 Delay,
 Reflection amplitude,
 Reflection phase, 

 Delays (in bits) of 0.5, 1, 2, 5, 10, 20, and 50
 Delays much shorter than 0.5 bit are essentially flat fades, where 

the signal power is simply gone.  EQ cannot help.
 Amplitudes of 0.5 to 0.9 in steps of 0.1

 For bonus points, include 0.95 and 0.98

 Phases of 0° to 360° in 10° steps
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What is the Measured Value?

 Must be observable with EQ both on and off
 Bit error rate is universally understood
 DQM is readily computed from BER

 With calibration, DQM is much more quickly 
measured

 Remind me again, what is DQM?
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Definition of DQM (a.k.a. Q)

 To a statistician, DQM is the “Log Likelihood Ratio”
 Start with probability of error, P

 Be practical: 0.5 < P < 1e-12
 BEP, derived within demod
 BER, measured with a BERT

 Likelihood Ratio (LR) = P / (1 – P)
 Q = min (-log10(LR), 12)
 Easily reversed:

 P = 10-Q / (1 + 10-Q)

 Short version
 Q = 5  P = 1e-5

P Q
0.5 0.000

1E-01 0.954
1E-02 1.996
1E-03 3.000
1E-04 4.000
1E-05 5.000
1E-06 6.000
1E-07 7.000
1E-08 8.000
1E-09 9.000
1E-10 10.000
1E-11 11.000
1E-12 12.000
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DQM Calibration Fixture
 Synthesize “impaired” RF signal
 Recover the “corrupted” data (with clock)
 Extract the frame sync word, including DQM
 Measure BER of payload data
 Compare DQM (converted to BEP) to measured BER

 Recorded and stored on a packet-by-packet basis
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Test Procedure

 Set frequency, modulation, and bit rate
 Turn the equalizer off
 Set Eb/N0 to 20 dB
 Set direct path to delay 0, amplitude 1, angle 0
 Enable multipath
 Set reflected path delay and amplitude
 Loop through delayed path phase

 0 degrees to 360 degrees in 10 degree steps
 Record DQM at each step, or record BER and calculate DQM
 Plot DQM versus phase in polar form

 Turn equalizer on and repeat
 If two test units are available, test EQ on and EQ off at the same time
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Grading the Tests

 Measure BER with EQ on and off, then compute DQM
 If your DQM is well calibrated, measure DQM directly

 Plot DQM vs. delay path phase, in polar form
 Radius = DQM
 Angle = phase of delayed path

 Result will be a distorted “hoop”
 Bigger radius is better
 Some angles will be worse than others

 Compute the area of each “hoop” for EQ on and off
 “Equalizer Benefit” = Areaon – Areaoff

 Since the radius is (essentially) the logarithm of the BER, the difference 
is the number of orders of magnitude improvement in BER
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DQM Calibration
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No Multipath, No Problem



Las Vegas, NV • 24 October 2019
Terry Hill - thill@quasonix.com58

0-100-0.9
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30-100-0.9
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60-100-0.9
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90-100-0.9
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120-100-0.9
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150-100-0.9
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180-100-0.9
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210-100-0.9
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240-100-0.9
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270-100-0.9
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300-100-0.9
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330-100-0.9
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360-100-0.9
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180-100-0.5



Las Vegas, NV • 24 October 2019
Terry Hill - thill@quasonix.com72

180-100-0.6



Las Vegas, NV • 24 October 2019
Terry Hill - thill@quasonix.com73

180-100-0.7
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180-100-0.8
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180-100-0.9
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180-100-0.95
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180-100-0.98
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180-100-0.9
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180-150-0.9
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180-200-0.9
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180-250-0.9
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180-300-0.9
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180-500-0.9
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180-1000-0.9
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180-2000-0.9



Test Results Examples
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10 Mbps SOQPSK, 1 bit Delay
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10 Mbps SOQPSK, 2 Bits Delay
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10 Mbps SOQPSK, 5 Bits Delay
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10 Mbps SOQPSK, 10 Bits Delay
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10 Mbps SOQPSK, 20 Bits Delay
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What About Dynamics?

 Most pronounced effect of target motion is 
variation in phase of the reflected path
 Manifests as spectral nulls sweeping through spectrum

 Proposal:
 Stress the equalizer by sweeping the null faster and faster, until 

the EQ benefit starts to drop.
 Similar to the Break Frequency test for combiners

 Figure of merit becomes the “Break Frequency” 
of the equalizer
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What Can we Measure?

 Measure the BER, averaged over all phases
 Correlates with moving test article
 Convert to DQM
 Or measure DQM, but average it correctly (see next slide)

 For consistency with the static plots, plot DQM versus 
“spin rate”

 Plot multiple delay path amplitudes on one chart
 Separate charts for each delay value
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Equalizer Break Frequency



Best Channel Selector (BCS)

Handling the “Un-Combinable” Signals



Las Vegas, NV • 24 October 2019
Terry Hill - thill@quasonix.com96

 Polarization, frequency, or short-range spatial diversity
 Maximal Ratio Combiner sums input channels 

proportional to their SNR
 Optimal in additive white Gaussian noise (AWGN) – up to 3 dB gain
 Use as only receiver output?

Receive Diversity – Combiner

Presenter Notes
Presentation Notes
Receive diversity uses multiple different copies of received data to minimize the chance of data dropouts or bit errorsThis diagram shows two common forms of receive diversity:Three receivers feeding a Best Source Selector, and two received signals feeding each receiverThese signals may have different polarization, different frequencies, or come from different antennas…
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 Maximal ratio combining

SNR 
Estimator

Time 
Aligner

Phase 
Aligner

CH1 Input

CH2 Input

CH1 Weight

CH2 Weight

Combiner
Output

Multipath

Combiner Structure

how good? make sure we can
sum coherently

sum
(more of the better,
less of the worse)

Presenter Notes
Presentation Notes
To answer that question, let’s look at how a combiner works…So, what could possibly go wrong?
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 Maximal ratio combining issues

 Inaccurate SNR estimation: multiple signal copies, little or no noise
 Degraded time and phase alignment
 Downstream demodulator must deal with all received reflections

SNR 
Estimator

Time 
Aligner

Phase 
Aligner

CH1 Input

CH2 Input

CH1 Weight

CH2 Weight

Combiner
Output

Multipath

Combiner Performance

n1 reflections

n2 reflections

n1+n2
reflections

Presenter Notes
Presentation Notes
…
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 Maximal ratio combining issues

 Inaccurate SNR estimation: overwhelm estimator with strong undesired
signal

SNR 
Estimator

Time 
Aligner

Phase 
Aligner

CH1 Input

CH2 Input

CH1 Weight

CH2 Weight

Combiner
Output

Interference Multipath

Combiner Performance

Presenter Notes
Presentation Notes
…
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 Maximal ratio combining issues

 Propagation effects may result in non-combinable signals

SNR 
Estimator

Time 
Aligner

Phase 
Aligner

CH1 Input

CH2 Input

CH1 Weight

CH2 Weight

Combiner
Output

Interference Multipath Propagation

Combiner Performance

Presenter Notes
Presentation Notes
…More details on this in the paper
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 Like a mini-BSS inside the receiver
 Selects and outputs best data from just three sources 

(Channel 1, Channel 2, and Combiner)
 Optimized for this narrowly scoped role

Receive Diversity – BCS

Presenter Notes
Presentation Notes
To address those shortcomings, we introduce the concept of a Best Channel Selector…
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Data Buffer

Data Buffer

Data Buffer

Correlator 
(Time 

Aligner)
Selector BCS Data/

DQM Output

CH1 Data/
DQM Input

Combiner 
Data/DQM 

Input

CH2 Data/
DQM Input

DQM 3-to-1 Small Delay Criterion

BCS Structure
 3-channel correlating selection

line up bits from all channels
select best bit 

based on
best DQM

“hit-less” – no dropped or duplicated bits

Presenter Notes
Presentation Notes
Like a BSS……
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BCS Test – Multipath
 Apply severe multipath, engage adaptive equalization
 BCS outperforms all channels

Presenter Notes
Presentation Notes
BCS has been subjected to numerous tests in the lab as well as months of use in the fieldHere’s just one example…
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 DQM reduction of 1 = BER increase of 10x (!)
 BCS selection > 1000x faster than display

BCS Test – Multipath
Combiner DQM

BCS DQM

Presenter Notes
Presentation Notes
…
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BCS Test – Summary
 Uniformly equals or exceeds best channel’s performance

AWGN Break Frequency

Multipath

STC polarization Flight Recording

BCS

Presenter Notes
Presentation Notes
…
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Conclusions
 Combiner best most of the time, but not always
 BCS mitigates cases where Combiner falls short

 Uses DQM to form reliable selection criterion
 Dynamically selects best data from Channel 1, Channel 2, or Combiner

 Preserves combiner gain in AWGN
 Supplements combiner in multipath, interference, etc.

 Generates output with accurate composite DQM
 Provides single output from dual-channel receiver that reliably 

supplies data superior to best channel, including Combiner

 BCS does not replace BSS
 BCS has great performance local to one receiver
 BSS extends performance range-wide with multiple receive sites

Presenter Notes
Presentation Notes
…



Best Source Selection
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Combining Multiple Sources
 Receive and demodulate the same signal at multiple receive sites
 Funnel all the demodulated data to one central location
 Time align the multiple data streams
 Build a better output stream from the multiple input streams
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Selection Algorithms
 Majority vote

 Reasonably effective with three or more sources
 Reduces to guesswork with only two sources
 Sub-optimal for any number of sources

 PCM frame header accuracy
 Uses only a small fraction of the bits to make an estimate
 Poor resolution (BER is typically measured as Num_errors ÷ 32)
 Useless with encrypted data

 Log-likelihood ratio
 Uses all the bits
 Works with encrypted data
 Max-likelihood (optimal) combining scheme

 Rice, Michael and Perrins, Erik. "Maximum Likelihood Detection From Multiple Bit Sources", Proceedings of the 
International Telemetering Conference, Las Vegas, NV, USA, 2015.
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Why Measure Data Quality?
 Telemetry links suffer 

from a wide range of 
impairments
 Noise
 Interference
 Multipath
 Shadowing
 Loss of antenna track

 We need a way to 
asses the impact of all
these impairments

 We need to compute pn
 Quickly
 Accurately

Rice, Michael and Perrins, Erik. "Maximum Likelihood Detection 
From Multiple Bit Sources", Proceedings of the International 

Telemetering Conference, Las Vegas, NV, USA, 2015. 
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Terminology
 BER (Bit Error Rate)

 Measured as (number of errors / number of bits)
 Assumes you know the data in advance
 Measuring very low BER requires a long time
 Converges to BEP if test runs long enough, and channel is static

 BEP (Bit Error Probability)
 Calculated likelihood that a bit is in error
 Even very low BEP can be determined from only a few bits

 DQM (Data Quality Metric)
 Derived directly from BEP
 Expressed as a 16-bit integer

 DQE (Data Quality Encapsulation)
 Process of “bundling” DQM words and payload data
 Includes a sync word to identify the start of the DQE frame
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Data Quality Encapsulation
 Payload data is bundled with its DQM, to give Best Source Selectors 

a valid basis for “best”
 Interoperability among vendors requires standards

 DQM calibration against multiple signal impairments
 DQE packet structure

 Quasonix has developed and shared an open DQM/DQE format 
 Published at ITC 2015
 License-free, royalty-free 
 RCC standard as of IRIG 106-17, Chapter 2, appendix G

 Includes test procedures to evaluate DQM accuracy
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Does it work?
 Four “poor” channels for input to BSS
 One nearly error-free output from BSS
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BSS Summary

 Correlating (time-aligning) source selectors deliver 
output data that is better than any single input stream

 Combats all forms of signal impairment
 Noise
 Multipath
 Interference
 Shadowing
 Loss of antenna track

 Diversity can be in any form
 Polarization
 Frequency
 Spatial

 DQE / DQM equip the BSS to make optimal decisions



Rx/TX DSP Techniques
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Rx/Tx DSP Techniques
 If you can choose your transmitter…
 Space-time coding (STC)

 Mitigates “built-in” multipath from dual TX antennas
 Requires dual transmitters

 Forward error correction
 Spending bandwidth to buy link margin
 Requires encoder implemented in transmitter



Space-Time Coding

Eradicates Porcupines!



Las Vegas, NV • 24 October 2019
Terry Hill - thill@quasonix.com118

Difficulties with TX Diversity
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Alamouti Space-Time Coding (STC)

A  B  C  D  E  F  G  H  I  J  K  L ...

STC

A -B* C -D* E -F* G -H* I -J* K -L* ...

B  A* D  C* F  E* H  G* J  I* L  K* ...

Traditional

1st block 2nd block

A  B  C  D  E  F  G  H  I  J  K  L ...
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Symbol Error Rate - QPSK

For Alamouti signaling
Only magnitudes of
transfer functions
used in sum

Traditional signaling
Addition of transfer
functions leads to
reduction in effective
SNR
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Consider BPSK Signaling and Assume s1 = s2 = 1
Time Slot 1:

Gain Pattern: 

Time Slot 2:
Gain Pattern:

Antenna Pattern Interpretation
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SER Simulations

Results Identical to Single Receive Antenna System 

Circular
Polarization 

Diversity 
Reception
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10 W

10 W

Flight Tests: Airborne Configuration
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12
4

C-12 Beechcraft: Airborne Platform
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STC Video Clip

12
5
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STC Summary

 Dual-Antenna Diversity Scheme
 Removes dropouts created by multiple transmit 

antennas
 SNR equivalent to single antenna transmission
 Multi-antenna scheme alleviates masking during 

maneuvering
 Can be used with diversity reception

 Realtime hardware flight tested at Edwards AFB 
and showed substantial performance benefit
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M1: Test Results
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M2: Test Results
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M3: Test Results
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M4: Test Results

13
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M3 to C2 Transition Test Results

13
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C2: Test Results

13
2
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D2: Test Results

13
3
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STC Summary

Dual-Antenna Diversity Scheme 
 Removes interference created by multiple transmit 

antennas
 SNR equivalent to single antenna transmission
 Multi-antenna scheme alleviates masking during maneuvering
 Can be used with diversity reception

 Realtime hardware flight tested at Edwards AFB and 
showed substantial performance benefit



Forward Error Correction
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Forward Error Correction
 Basic premise

 Insert redundant bits into transmitted stream
 Use known relationships between bits to correct errors

 Countless schemes have been developed
 Convolutional code / Viterbi decoder
 Block codes

 BCH
 Reed-Solomon

 Concatenated codes
 RS / Viterbi
 Turbo product codes (TPC)

 Low Density Parity Check (LDPC)
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LDPC Codes - History
 LDPC: Low Density Parity Check
 Linear block codes

 Some are systematic

 Developed by Robert G. Gallager at M.I.T. in 1960
 Published by the M.I.T Press as a monograph in 1963

 No practical implementations at that time
 Re-discovered by David J.C. MacKay in 1996

 Began displacing turbo codes in the late 1990s

 Recent history
 2003: LDPC code selected for the new DVB-S2 standard for the satellite digital TV
 2006: LDPC code selected for 10GBase-T Ethernet (10 Gbps over twisted-pair cables)
 2007: LDPC codes published by CCSDS as an “Orange Book”
 2008: LDPC code selected for the ITU-T G.hn standard
 2009: LDPC codes adopted for Wi-Fi 802.11 High Throughput (HT) PHY specification
 2012: LDPC code selected for integrated Network Enhanced Telemetry (iNET)
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LDPC AR4JA Codes
 AR4JA: Accumulate-Repeat-4-Jagged-Accumulate
 Published by CCSDS as an “Orange Book”

 Low Density Parity Check Codes For Use in Near-Earth and Deep Space Applications

 Defines a family of systematic LDPC codes

 Defines attached sync markers (ASM) 
 Specified in section 6 of CCSDS Recommended Standard CCSDS 131.0-B-1

 Present work based on the (6144, 4096) code
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Packet Assembly

 Input 4096 data bits
 Randomize prior to encoding, if necessary

 Compute and append 2048 parity bits
 Prepend 256-bit attached sync marker (ASM)

 Yields a 6400-bit packet
 Each and every code word carries the ASM:  A, A, Ā, A

 A = FCB88938D8D76A4F
 Ā = 034776C7272895B0

 Synchronization requires at most one code word

A A Ā A 4096 Data Bits 2048 Parity bits
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Spectral Characterization
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Fractional Out-of-Band Power
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Decoder

 Demodulate SOQPSK with soft decisions
 Implemented 8-bit decisions

 Iterative decoders work best with high resolution soft decisions

 Estimate Eb/N0 for soft decision scaling

 Correlate for ASM with hard decisions
 Resolves the 4-ary phase ambiguity in SOQPSK
 Virtually certain sync at Eb/N0 = 0 dB

 Initialize decoder
 Execute decode iterations until next code word

 Coding gain varies with bit rate
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Measured BER Results
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LDPC from Appendix 2-D 
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BER – All Modes 
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Conclusions
 Rate 2/3 LDPC code yields ≈9 dB coding gain relative to uncoded 

SOQPSK
 ±0.5 dB, depending on data rate

 256-bit ASM provides reliable, fast synchronization at Eb/N0 < 0 dB
 Synchronization is consistently achieved in < 4096 data bits

 Bandwidth expansion of 25/16
 Still 22% less bandwidth than legacy PCM/FM

 SOQPSK with LDPC offers a reasonable trade of spectral efficiency 
for a significant gain in detection efficiency

 5 other LDPC codes offer similar trade of bandwidth for BER 
performance



How Well Does It All Work 
Together?

Yuma Proving Grounds, AZ
Feb 8-11, 2016
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Recipe for Delivering Every Bit
 Space Time Coding (STC)

 Eliminates aircraft pattern nulls

 Low Density Parity Check (LDPC) coding
 Improves margin, stops “dribbling errors”

 Adaptive Equalization (for non-STC signals)
 Mitigates multipath

 Spatial diversity with correlating source selection
 Eliminate coverage-based dropouts
 Requires DQE/DQM for optimal operation
 TMoIP makes delivery easy
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Multiple Receiving Sites

Best Source Selector used 6 
inputs: Ch1, Ch2 from each 
source, but not the combiner 

outputs (not enough 
channels).
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Dual Transmitter – S band – 10 W each output

Installed in UH-1 (Huey) 
helicopter with top and 
bottom blade antennas
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YPG Test 
Sites

Site CM4

Site 2

Site 4

Site 4 to Site CM4 = 14.25 mi

Laguna Airfield
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Analysis using Data Logs
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Flight 1 – PCM/FM 5 Mbps
Link Availability Summary (PN23 BER)
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Flight 2 – SOQPSK 5 Mbps
Link Availability Summary (PN23 BER)
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Flight 3 – SOQPSK 20 Mbps
Link Availability Summary (PN23 BER)
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Flight 4 – STC/LDPC 5 Mbps
Link Availability Summary (PN23 BER)
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The elusive zero-error link…..

 STC/LDPC from 3 sites 
at 5 MBPS

 1st pass PN23 -- 34 
minutes of helicopter 
flight across YPG…

 Error-free!

 2nd pass video with no 
freeze ups or blackouts!
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Questions/Comments



Thank You!
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