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Course Outline

 Performance Metrics

 Continuous Phase Modulation (CPM)
 Tier 0

 Tier I

 Tier II

 Demodulation
 Synchronization

 Channel Impairments
 Adjacent Channel Interference

 Lunch

 Multipath Propagation

 Impairment Mitigation Techniques
 Diversity Combining

 Adaptive Equalization

 Best Source Selection

 Space-Time Coding

 Forward Error Correction (FEC)

 Using All the Tools Together

 Performance Comparison & Summary



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com3

Performance Metrics

 Information Fidelity
 Additive White Gaussian Noise (AWGN) channels

 Bit Error Probability (BEP) or Bit Error Rate (BER)

 Bursty (dropout) channels
 Cumulative error count

 Link Availability

 Bandwidth Efficiency
 Power spectral density

 Fractional Out-of-band Power

 Channel spacing with adjacent channel interference (ACI)

 Bandwidth-Power plane
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BER Performance Comparison
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Cumulative Error Counts
in Bursty Channels

Bit Error Accumulation History
ARTM flight 78, frequency diversity, 5 m antenna, high altitude corridor, easterly, 20k ft. altitude
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Figure from Robert Jefferis, Tybrin, Edwards AFB.  Reprinted by permission of the author.
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Performance Metrics

 Link Availability (LA) – % of the time that 
the instantaneous BER over 1 sec blocks is 
less than 10-5. 

 Video Availability (VA) - % of time video is 
available (picture on time/ total time x 100)

 These two metrics are not the same.  Video 
system sensitivity and its response to bit 
errors can have significant impact on VA 
performance.
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Which Bandwidth?

 Fixed level
 -60 dBc is common

 -25 dBm is “standard” in IRIG-106

 Fractional out-of-band power
 99%, 99.9%, 99.99% are all used

 Minimum frequency separation
 Accounts for receive-side effects

 Receiver IF filtering

 Demodulator interference tolerance

 Relative levels of interfering signals

 Depends on application
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Power Spectral Density (PSD)
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Fractional Out-of-band Power

5 Mbps
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Bandwidth-Power Plane
 Simultaneous representation of 

 Bandwidth Efficiency (Bandwidth normalized to Bit Rate)

 Power Efficiency (Eb/No required to achieve 10-5 BEP)

Eb/No (dB) Required for 10-5 BEP
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Today’s Modulation Tour



Continuous Phase Modulation
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The Modulation Universe

 Analog, Digital

 Amplitude modulation 

 Quadrature amplitude modulation

 Angle modulations
 Frequency modulation

 Phase modulation
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Angle Modulations

 Includes both frequency modulation and phase modulation

 Some have an amplitude modulation component
 BPSK

 QPSK

 Offset QPSK

 Some are constant envelope
 Binary FM

 FSK, MSK, premod filtered MSK, GMSK

 M-ary FSK

 SOQPSK

 Multi-h continuous phase modulation

 No amplitude variation

 Saturated power amplifiers are ideal for constant envelope 
waveforms
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Saturated Power Amplifiers

 DC-to-RF conversion efficiency is important
 Minimizes cooling requirements

 Maximizes battery life

 Maximizing efficiency demands nonlinear operation

 Non-linear operation creates AM-AM and AM-PM 
conversion:
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Constant Envelope Modulations

 Before ARTM (Tier 0)
 PCM/FM

 “Legacy” waveform for telemetry

 Advanced Range Telemetry (ARTM) Program
 ARTM Tier 1

 Proprietary Feher-patented FQPSK
 FQPSK-B, Revision A1

 FQPSK-JR

 SOQPSK-TG
 Equivalent in performance to FQPSK

 Non-proprietary

 ARTM Tier 2 
 Multi-h CPM (M=4, L=3RC, h1 = 4/16, h2 = 5/16)

 PCM/FM, SOQPSK and Multi-h CPM are all continuous 
phase modulations (CPM)
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CPM Notation and Parameters

 Where ai represents an M-ary symbol sequence
 ai derived from input bits di

 h is the modulation index

 g(t) is the frequency pulse shape in the interval 0 < t < LT
 L = 1 is “full response” signaling

 L > 1 yields “partial response”

 CPM is a modulation with memory due to the constraint of 
continuous phase. Further memory is introduced with L > 1.
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Key Parameters of CPM

 M – Order of Modulation (2-ary, 4-ary, etc.)

 g(t) - Frequency Pulse (Rectangular, Raised Cosine, etc.)

 L – Length of Frequency Pulse

 h – Modulation Index

 Increase Spectral Efficiency by
 Increasing M

 Reducing h

 Increasing L

 Choosing Smoother Frequency Pulse Shape

 In general, increasing spectral efficiency decreases 
detection efficiency
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CPM Characteristics

 Continuous Phase

 Constant envelope

 Signals are described by their phase trajectories
 Phase tree representation is complete

 PSD and BER can be “traded” by
 Varying h, modulation index

 Changing g(t), the frequency pulse shape

 Phase trellis decoder is optimum for any variant of CPM
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Phase Tree Representation
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M=2, h=1/2, 1REC (MSK)
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M=4, h=1/4, 1REC
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M=4, h=1/4, 1RC
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M=4, h=1/4, 2RC
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M=4, h=1/4, 3RC
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Multi-h CPM

 Cyclically rotates through multiple “sets” of 
FSK tones

 Increases minimum distance in trellis
 Improves BER performance

 Widely proposed for high-performance 
nonlinear channels
 MIL-STD-188-181B
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M=2, h1=1/4, h2=1/2, 1REC

-1.5

- 1

-0.5

0

0 . 5

1

1 . 5

0 1 2 3 4

CPM Phase Tree

M
u
lt
ip

le
 o

f 
π

Time in Symbols

RECShaping

1/4, 1/2h

2M

1L

-120

-100

-80

-60

-40

-20

- 2 -1.5 - 1 -0.5 0 0.5 1 1.5 2

P
S

D
 i

n
 d

B
c
/H

z

CPM PSD

Frequency (Bit Rates)

PSD vertical axis is dBc per FFT bin
1 FFT bin = 1/64 * symbol rate



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com28

M=4, h1=4/16, h2=5/16, 3RC
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CPM Summary

 To reduce bandwidth of a CPM signal, the phase 
transitions must be smoothed by:
 Requiring phase to have more continuous derivatives

 Spreading the phase change over more intervals (i.e., L > 1)

 Reducing h

 The shape of g(t) determines the smoothness of the 
information-carrying phase

 An endless variety of CPM schemes can be 
obtained by choosing different g(t) pulse shapes and 
varying the parameters h and M.



ARTM Tier 0
(PCM/FM)
(CPFSK)

The way things were
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PCM/FM (Tier 0)

LPF
FM

Modulator
bipolar
NRZ-L

ò
¥-

=
t

d dmft llpf )(2)(
frequency is the time-derivative of the phase
since the phase is proportional to the integral of 
m(t), the frequency is proportional to m(t).

)(tm
)(tx

( ))(2cos)( 0 ttfAtx fp +=

time-varying phase

Figure from " Quadrature Modulation for Aeronautical Telemetry”, by Michael Rice, BYU 
and Robert Jefferis, Tybrin Corp, ITC 2001.  Reprinted by permission of the authors.
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Tier 0 in CPM Notation

 M = 2 (binary)

 ai = 2di - 1
 di = {0, 1}, ai = {-1, +1}

 h = 0.7

 g(t) is the normalized impulse response of a high order Bessel filter 
with 3 dB bandwidth = 0.7 * bit rate

 Normalized such that the integral over all time = 1/2
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PCM/FM as a Phase Modulation
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Power Spectral Density (PSD)
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Fractional Out-of-band Power

5 Mbps
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PCM/FM Summary

 Legacy waveform
 Equipment is ubiquitous

 Constant envelope

 Several practical implementations

 99.9% bandwidth: 2.03 times bit rate

M ai h g(t)
2 {-1, +1} 0.7 Normalized impulse response of a high order 

Bessel filter with 3 dB bandwidth = 0.7 * bit rate



ARTM Tier I
(SOQPSK-TG)

The way things are
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Tier I Overview

 Shaped OQPSK (SOQPSK)
 Constant envelope modulation(s) introduced by Hill (ITC 2000)

 Defined by 4 parameters ( r, B, T1, T2 )

 Compatible with existing efficient non-linear class C power amplifier

 Non-proprietary waveform

 Comparable in performance and interoperable with FQPSK

 FQPSK
 Patented by K. Feher

 Defined by I and Q components

 Non-constant envelope

 Details are proprietary, contact Digcom
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SOQPSK in CPM Notation

 M = 3 (ternary)

 ai = {-1, 0, +1}

 ai = 2di - 1

 ai = {-1, +1}, di = {0, 1}

 h = 0.5

 g(t) = windowed impulse response of spectral raised cosine

 Normalized such that the integral over all time = 1/2
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Definition of SOQPSK Pulse

g(t) = n(t) * w(t), where

n(t) =
Acos(pr Bt T)

1- 4(r Bt T )2
*

sin(p Bt T )
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1, for t T < T1

1

2
+

1

2
cos

p ( t T -T1)

T2

, for T1 < t T < T1 + T2

0, for t T > T1 + T2

ì 

í 

ï 
ï 

î 

ï 
ï 

ü 

ý 

ï 
ï 

þ 

ï 
ï 



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com41

Frequency Pulse Shape, g(t)
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SOQPSK Variants
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Optimal SOQPSK Variants
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Unshaped Offset QPSK
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Slightly Shaped OQPSK
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MIL-STD SOQSPK
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SOQPSK-TG
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SOQPSK-TG

 Jump to 
file://localhost/Users/TerryHill/Documents/Qu
asonix/TIMTER/SOQPSK Modulator10.xls
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SOQPSK-TG Phase Tree
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Power Spectral Density
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SOQPSK-TG Eye Patterns

 Single-symbol 
detection is sub-
optimal, but 
practical
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SOQPSK Constellations

Wait!  I thought SOQPSK was 
constant envelope…
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Measured PSD (Tier 0 & 1)
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Fractional Out-of-band Power

5 Mbps
Often-cited factor of two
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Shaped Offset QPSK Summary

 Constant envelope, CPM waveform

 Adjustable shaping factor for BW and detection efficiency trade-off

 Improved spectral containment over OQPSK

 Compatible with standard OQPSK receivers and demodulators

 Adopted as an ARTM Tier I waveform

 99.9% bandwidth: 0.98 times bit rate

 Interoperable with FQPSK

M ai h g(t)
3 {-1, 0, +1} 0.50 Normalized windowed impulse response of a 

spectral raised cosine



ARTM Tier II
(ARTM CPM)
(Multi-h CPM)

The way things can be
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Tier II Overview

 Multi-h CPM characteristics
 Easy to trade off bandwidth and detection efficiency.

 Constant envelope is ideal for high efficiency non-
linear power amplifiers.

 Detection efficiency is enhanced by periodically 
varying the modulation index (h). 

 Extends the point at which competing paths remerge thereby 
increasing the minimum distance and decreasing the probability of 
symbol error.

 Nearly 2.5x improvement over PCM/FM in spectral 
efficiency with similar detection efficiency.
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ARTM Tier II in CPM Notation

 M = 4 (quaternary)

 ai = 2 [2d1i + d0i] - 3
 ai = {-3, -1, +1, +3}

 di = {0, 1}

 h = {4/16, 5/16}, alternating

 g(t) = raised cosine, 3 symbols (6 bits) in duration

 Normalized such that the integral over all time = 1/2
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Frequency Pulse & Phase Tree
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PSD (Tier 0, I, & II)
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Fractional Out-of-band Power

5 Mbps
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Tier II Multi-h CPM Summary

 Similar detection efficiency to PCM/FM.

 Constant envelope waveform is ideal for efficient 
non-linear PA’s.

 Enhanced performance gained by increasing 
demodulator complexity.

 99.9% bandwidth: 0.75 times bit rate

M ai h g(t)
4 {-3, -1, +1, +3} {4/16, 5/16} Normalized raised cosine, 3 symbols 

(6 bits) long
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Side by Side Summary
Tier M ai h g(t) 99.9% 

BW
0 2 {-1, +1} 0.7 Normalized impulse response of a high order 

Bessel filter with 3 dB bandwidth = 0.7 * bit rate
2.03

I 3 {-1, 0, +1} 0.5 Normalized windowed impulse response of a 
spectral raised cosine, 8 bits long

0.98

II 4 {-3, -1, +1, +3} {4/16, 5/16} Normalized raised cosine, 3 symbols (6 bits) long 0.75



Demodulation
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Demodulation

 As the shop manual says, “Installation is reverse 
of removal.”

 Demodulation is intrinsically more difficult
 Unknown carrier frequency

 Unknown carrier phase

 Unknown clock frequency and phase

 Signal corruption
 Noise 

 Interference

 Multipath

 Doppler shift

 Multiple techniques can be applied
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 Tier 0
 Legacy (nearly exclusive in 20th century)

 Simple to build

 Robust to signal defects and channel impairments

 ~3.5 to 5 dB short of theoretical limit

 Tier I
 Requires optimization for SOQPSK

 Weakly synchronized

 Requires high SNR for acquisition

 ~1.0 to 1.5 dB short of theoretical limit

 Tier II
 No practical single-symbol detectors

Single-Symbol Demodulation
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Tier 0 Single-Symbol Detection

 Differentiate the phase to get frequency
 Limiter-discriminator

 Phase locked loop

 Digital processing

 If the frequency in this symbol > 0, data = 1

 If the frequency in this symbol < 0, data = 0
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Tier 0 Frequency Detection
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SOQPSK-TG Eye Patterns

 Single-symbol 
detection ignores 
memory inherent in 
waveform

 Can be detected by 
conventional (non-
shaped) offset 
QPSK demod

 I&D detector 
endures additional 
loss due to 
waveform mismatch
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SOQPSK Constellations
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Waveform Comparison

PCM/FM (1x)           SOQPSK (2x)       Multi-h CPM (2.5x)
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 Tier 0
 Invented in 1974, introduced in 2001

 Osborne & Luntz, “Coherent and Noncoherent Detection of CPFSK”, IEEE T-COM, August 1974

 Requires significant signal processing power

 Signal defects and channel impairments require attention
 DSP techniques can be applied to solve these issues

 Operates within 0.2 dB of theoretical limit

 Tier I
 Strong, rapid synchronization

 Operates within 0.2 dB of theoretical limit

 Tier II
 Mandatory for practical implementation

Trellis Demodulation Overview
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Tier 0 Phase Tree
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A multi-symbol detector finds the data sequence
that best fits the observed phase trajectory
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Why Does It Matter?
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If this bit is different, the phase 
trajectory is forever shifted…

Therefore, later bits can help make 
decisions about earlier bits.Noise-corrupted 

trajectory

Single-symbol detector 
decides “zero”

Multi-symbol detector 
decides “one” –

correcting the error
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Multi-Symbol Detector Example

Phase
1

1
1
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Correlators

Choose
Largest

Magnitude

Middle
Bit

Multi-Symbol
Detector Span

Brute force approach –
yields performance gain, 

but leads to extreme 
hardware complexity
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Generic Trellis Demodulator

Brains over brawn – Efficient 
computation yields the same 

performance as the brute force 
approach, with far less hardware
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Tier 0 BER Performance
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Legacy PCM/FM Transmitters
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Effect of TX Deviation Error
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What About Phase Noise?
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No phase noise:
The entire trellis is helpful

Minimal phase noise:
Several bits of the trellis are helpful

Significant phase noise:
A few bits of the trellis are helpful

Severe phase noise:
Not a candidate for trellis demodulation
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Phase Noise

 Trellis demodulation is based on the assumption 
that the signal is following a predictable path 
through the trellis.

 If this is not true (due to high phase noise), then 
a trellis demodulator may not provide the 
expected performance gain

 Most often an issue at low bit rates

 Some trellis demods handle this case by 
modifying the trellis calculations.
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SOQPSK Detection

 Can be detected by conventional (non-
shaped) offset QPSK demod

 Non-matched filtering loss of about 2 dB

 Butterworth lowpass filter is reasonable 
approximation to matched filter

 Trellis detection is optimum, but more 
complex
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SOQPSK-TG Phase Tree
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SOQPSK Detection Efficiency

SOQPSK-TG
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Multi-h CPM Detection

 Modulator intentionally creates severe inter-
symbol interference
 3-symbol RC premod filter

 Symbol-by-symbol detection is essentially 
useless

 Trellis detection is required
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BER Performance Comparison



Synchronization
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Telemetry Channels are Bursty

Bit Error Accumulation History
ARTM flight 78, frequency diversity, 5 m antenna, high altitude corridor, easterly, 20k ft. altitude
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Figure from Robert Jefferis, Tybrin, Edwards AFB.  Reprinted by permission of the author.

In a typical flight test, the vast majority 
of bit errors occur at dropouts
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Synchronization Test

 IRIG 118-12, Procedure 7.4 (Flat Fade Recovery Test)

 Transmit randomized ones pattern

 Measure time at which output becomes “all (or mostly) ones”

IRIG 
Randomizer

Modulator Add Noise

Noise

Switch

Demod
with

Derandomizer
Timer

Ones
Detector

All ones

Controller

Start

Stop
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Synchronization Parameters

 Modulation technique
 Tier 0 uses more bandwidth – easier to synchronize to

 Tier I is spectrally compact, making it slippery – synchronization is more difficult
 Trellis demodulation helps achieve sync

 Tier II is even more compact – synchronization takes longer

 Bit rate
 Fixed-duration tasks amount to more bits at high bit rates

 Signal to noise ratio
 Sync times will be longer at low SNR

 Synchronization threshold
 SNR at which the demodulator can acquire sync

 Sync loss threshold
 SNR at which a synchronized demodulator will drop sync
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Tier 0 Synchronization, BER = 1e-5
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SOQPSK Synchronization, No Noise
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SOQPSK Synchronization, 6 dB

10 Mbps, 6 dB Eb/N0
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SOQPSK Synchronization, 3 dB

10 Mbps, 3 dB Eb/N0
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SOQPSK Synchronization, 1 dB

10 Mbps, 1 dB Eb/N0
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SOQPSK Synchronization, -1 dB

10 Mbps, -1 dB Eb/N0
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Synchronization Summary

 The aeronautical telemetry channel is plagued with 
dropouts

 Rapid synchronization, and synchronization at low 
SNR, is the best means of minimizing the impact of 
these dropouts

 IRIG 118 defines test procedures for measuring 
sync time and sync thresholds

 Pay attention to synchronization performance!



Adjacent Channel 
Interference
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PSD is Half the Story

 Overall spectral efficiency is determined by spacing 
between channels

 Receiver selectivity affects channel spacing

 A valid comparison must account for both 
transmitted spectrum and “tolerable” receiver 
filtering

 Not all modulations are equally “tolerant” of IF 
filtering and interference

 Multi-channel testing accounts for these factors
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Multi-channel ACI Test Set
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9 Mbps Multi-h CPM, Multichannel
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BER as a Function of F
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Degradation as a Function of F
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I/C=20 dB

ACI Summary
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Frequency Separation Rule

where:
• ΔF0 = the minimum center frequency separation in MHz
• Rs = bit rate of desired signal in Mb/s
• Ri = bit rate of interfering signal in Mb/s

ΔF0 = as*Rs + ai*Ri    

Modulation Type as ai Rs = Ri

NRZ PCM/FM 1

for receivers with RLC final 

Intermediate Frequency (IF) 

filters

1.2 2.2

0.7

for receivers with Surface 

Acoustic Wave (SAW) or digital 

IF filters

1.2 1.9

0.5
with multi-symbol  detectors (or 

equivalent devices)
1.2 1.7

FQPSK-B, FQPSK-JR, SOQPSK-TG 0.45 0.65 1.1

ARTM CPM 0.35 0.5 0.85

 The NRZ PCM/FM signals are assumed to be premodulation filtered with a multi-pole filter with  3 dB point of 
0.7 times the bit rate and the peak deviation is assumed to be approximately 0.35 times the bit rate.

 The receiver IF filter is assumed to be no wider than 1.5 times the bit rate and provides at least 6 dB of 
attenuation of the interfering signal.

 The interfering signal is assumed to be no more than 20 dB stronger than the desired signal.

 The receiver is assumed to be operating in linear mode; no significant intermodulation products or spurious 
responses are present.
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Multipath Propagation
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Multipath Propagation

The picture 
can't be  
displayed.

Dry lake bed = smooth reflecting surface

Narrow beam receive antennaAirborne transmitter Line-of-sight 
communications link

Irregular terrain

Low 
elevation 
angle

Figure from Dr.Michael Rice, BYU Telemetry Laboratory, Provo, Utah.  Reprinted by permission of the author.
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Multipath Experiments

127-PN
source

LPF
BPSK
mod

linear
PA

bipolar 
NRZ @
10 Mbits/sec

aircraft fuselage

hemispherically
omni-directional
antenna

tracking antenna

wideband
telemetry
receiver

70 MHz IF
high speed

digital 
oscilloscope

BPSK
demod

BER
analyzer

trigger
circuit

AGC
A/D

PC

GPS

sampling trigger

L-Band 1500 MHz
S-Band 2200 MHz

Figure from Dr.Michael Rice, BYU Telemetry Laboratory, 
Provo, Utah.  Reprinted by permission of the author.
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Edwards AFB Flight Paths

Figure from Dr.Michael Rice, BYU Telemetry Laboratory, Provo, Utah.  Reprinted by permission of the author.
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Signal Processing
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Figure from Dr.Michael Rice, BYU Telemetry Laboratory, Provo, Utah.  Reprinted by permission of the author.
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Modeling Procedure

( ) ( )
( )w

w
w

S

R
H =
 power spectral density of received signal

power spectral density of transmitted signal

Figure from Dr.Michael Rice, BYU Telemetry Laboratory, Provo, Utah.  Reprinted by permission of the author.



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com113

Measurement and Modeling

Figure from Dr.Michael Rice, BYU Telemetry Laboratory, Provo, Utah.  Reprinted by permission of the author.
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Multipath on the Tarmac

 Nearly static, frequency selective, long delays
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Multipath in Flight

 Dynamic, frequency selective and flat fading, various delays
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Received Signal Strength History
ARTM flight 78, Cords Road, westerly
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Figure from Robert Jefferis, Tybrin, Edwards AFB.  Reprinted by permission of the author.
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Received Signal Strength History
ARTM flight 78, Cords Road, westerly
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Figure from Robert Jefferis, Tybrin, Edwards AFB.  Reprinted by permission of the author.

Classic Two-Ray Multipath
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Multipath Summary

 If your test article operates near the ground, you are 
quite likely experiencing multipath.

 If so, there will be intervals during which no useful 
data is recovered.

 Loss of bit count integrity is likely
 Encrypted links will lose crypto sync

 What to do?

 Stay tuned for the “Mitigation” discussion



DSP Techniques for 
Telemetry
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DSP Techniques for Telemetry

 Maximal ratio combining – optimal against AWGN
 Polarization diversity

 Frequency diversity

 Receive-side processing, no transmitter impact

 Adaptive equalization
 Powerful tool against multipath

 Receive-side processing, no transmitter impact

 Best source selection
 Combats all forms of signal impairment

 Receive-side processing, no transmitter impact

 Space-time coding (STC)
 Mitigates “built-in” multipath from dual TX antennas

 Requires dual transmitters

 Forward error correction
 Spending bandwidth to buy link margin

 Requires encoder implemented in transmitter
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Maximal Ratio Combining

 Many telemetry systems utilize diversity reception
 Frequency separation using two transmitter

 Orthogonal polarizations using cross-polarized antenna feeds

 Combining two (or more) copies of the same signal
 Diversity combining

 Creates a third signal to be demodulated

 BER performance of third signal is better than either of the individual signals

 Special case – the leading use of diversity
 Linearly polarized transmit antenna on test article – could be at any orientation

 Left-hand and right-hand circularly polarized receive antennas

 Each receive antenna loses half the transmit power

 Diversity combiner puts it all back together, eliminating the polarization loss

 Frequency diversity works the same way, but uses twice the bandwidth
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Maximal Ratio Combining

 Weight each signal in proportion to its SNR and add

 Yields optimum SNR on combined channel in AWGN
 SNRcombined = SNRa + SNRb
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Maximal Ratio Combining

 Jump to 
file://localhost/Users/TerryHill/Documents/Quasonix/ITC 
2015/Diversity Combiner.avi
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BER Results - Fading Signals
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Measured Combiner BER - Tier 0
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Measured Combiner BER - Tier I
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Measured Combiner BER - Tier II
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Combiner Summary

 Receive-side processing
 No transmitter impact

 Phase aligns the signals

 Forms weighted sum of two inputs

 SNR of the weighted sum is at least as high as the better signal

 May be as much as 3 dB higher (equal input case)

 Conventional combiner design assumes signals are time-aligned
 Performance falls off rapidly with increasing time skew

 Combiner will probably fail altogether at ± ½ bit time skew

 Some combiners do both phase alignment and time alignment
 Supports operation with spatially separated antennas

 If you have access to two copies of the signal, use them!



Adaptive Equalization
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Multipath is Ugly

 Equalization can turn 

 this            into…      this.

Actual multipath from aircraft on 
the tarmac at Edwards AFB
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Adaptive Equalization

 Consider the multipath channel to be a filter
 Varies over time

 Consider building a filter which “undoes” the 
filtering imposed by the channel
 Let it keep track of the the channel and continuously adapt itself 

to the channel

 Presto!  You have an adaptive equalizer
 Can repair damage done by multipath

 Works with a single receiver

 Requires no bandwidth expansion

 Requires no changes to the transmitter
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Equalizer Techniques

J.G. Proakis, Digital 
Communications.  
1989 2nd Edition
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Generic Adaptive Equalizer

Equalizer
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Device

Equalizer
Adjustment

Error
Calculation

Training
Sequence

Symbol
Statistics

Training Mode Blind Mode

Decision-Directed Mode

Transmitted 
Signal

Received 
Signal Recovered

Data

Equalized
Signal

Error
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RF
Channel
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Equalizer AdaptationClick here



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com135

Dial-a-Channel
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Adaptive Equalizer Summary

 Adaptive equalizer can “undo” multipath distortion

 Requires no changes at the transmit end
 If available, a training sequence can be helpful

 Effectiveness of equalizer depends on the severity of the 
multipath

 Well-designed equalizers monitor their own performance, and 
disengage when they are doing badly.
 This must be done without losing bit count integrity

 If you have multipath, use an equalizer!



Best Source Selection
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Combining Multiple Sources

 Receive and demodulate the same signal at multiple receive sites

 Funnel all the demodulated data to one central location

 Time align the multiple data streams

 Build a better output stream from the multiple input streams
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Selection Algorithms

 Majority vote
 Reasonably effective with three or more sources

 Reduces to guesswork with only two sources

 Sub-optimal for any number of sources

 PCM frame header accuracy
 Uses only a small fraction of the bits to make an estimate

 Poor resolution (BER is typically measured as Num_errors÷ 32)

 Useless with encrypted data

 Log-likelihood ratio
 Uses all the bits

 Works with encrypted data

 Max-likelihood (optimal) combining scheme
 Rice, Michael and Perrins, Erik. "Maximum Likelihood Detection From Multiple Bit Sources", Proceedings of the International Telemetering Conference, 

Las Vegas, NV, USA, 2015.
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Why Measure Data Quality?

 Telemetry links suffer 
from a wide range of 
impairments
 Noise

 Interference

 Multipath

 Shadowing

 Loss of antenna track

 We need a way to 
asses the impact of all
these impairments

 We need to compute pn
 Quickly

 Accurately

Rice, Michael and Perrins, Erik. "Maximum Likelihood Detection 
From Multiple Bit Sources", Proceedings of the International 

Telemetering Conference, Las Vegas, NV, USA, 2015. 
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Terminology

 BER (Bit Error Rate)
 Measured as (number of errors / number of bits)

 Assumes you know the data in advance

 Measuring very low BER requires a long time

 Converges to BEP if test runs long enough, and channel is static

 BEP (Bit Error Probability)
 Calculated likelihood that a bit is in error

 Even very low BEP can be determined from only a few bits

 DQM (Data Quality Metric)
 Derived directly from BEP

 Expressed as a 16-bit integer

 DQE (Data Quality Encapsulation)
 Process of “bundling” DQM words and payload data

 Includes a sync word to aid BSS time alignment
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Data Quality Encapsulation

 Payload data is bundled with its DQM, to give Best Source Selectors 
a valid basis for “best”

 Interoperability among vendors requires standards
 DQM calibration against multiple signal impairments

 DQE packet structure

 Quasonix has developed and shared an open DQM/DQE format 
 Published at ITC 2015

 License-free, royalty-free 

 Proposed for adoption as an RCC standard

 Includes test procedures to evaluate DQM accuracy
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How to Assess Data Quality

 Measured BER is not practical
 Requires known data in the stream – not possible with encryption

 Takes a long time to measure low BERs

 Bit error probability (BEP), however…
 Does not require any known data

 Can be determined quickly and accurately from demodulator statistics

 Is an unbiased quality metric, regardless of channel impairments

 When calibrated per a standardized procedure, DQM based on BEP allows DQE 
from multiple vendors to interoperate

 Each vendor can use their own algorithm for developing BEP

 DQM is calculated directly from BEP
 Use of Likelihood Ratio leads to maximum likelihood BSS algorithms

 Converted to 16-bit integer on log scale
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Definition of DQM

 Start with BEP, derived within demod

 Likelihood Ratio (LR) = (1 - BEP) / BEP

 DQM = min (round (log10 (LR) / 12 * (2^16)), 2^16 -1)
 16-bit unsigned integer, ranges from 0 to 65,535

 Easily reversed:
 LR = 10^(-12 * DQM / 2^16)

 BEP = 1 / (1 + LR)

 Define “Q” as the “User’s DQM”
 Q = 12 * DQM / 65535

 Represents the exponent of 10 in the BEP

 Examples:
 Q = 3  BEP = 1e-3

 Q = 7  BEP = 1e-7

 Arbitrarily cap Q at “a perfect 10”.

BEP LR DQM Q

0.5 1.00 0 0.00

1E-01 1.11111E-01 5211 0.95

1E-02 1.01010E-02 10899 2.00

1E-03 1.00100E-03 16382 3.00

1E-04 1.00010E-04 21845 4.00

1E-05 1.00001E-05 27307 5.00

1E-06 1.00000E-06 32768 6.00

1E-07 1.00000E-07 38229 7.00

1E-08 1.00000E-08 43691 8.00

1E-09 1.00000E-09 49152 9.00

1E-10 1.00000E-10 54613 10.00

1E-11 1.00000E-11 60075 10.00

1E-12 1.00000E-12 65535 10.00
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DQE Format

 Header
 16-bit sync pattern (0xFAC4)

 MSB first: 1111101011000100

 8-bit reserved word, potentially for packet header version number (currently 0)

 8-bit reserved word, potentially for source ID tag (currently 0)

 16-bit DQM

 Payload data
 User selectable length, (128 ≤ N ≤ 16,536)

 Defaults to 4096

16-bit
Sync

Pattern

8
-b

it
W

o
rd 16-bit

DQM N bits of payload data (128 ≤ N ≤ 16,536)8
-b

it
W

o
rd



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com146

DQM Parameter Trades

 Choice of N impacts both DQM update rate 
and network efficiency
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Calibration of DQM

 Calibrate DQM under various channel impairments:
 AWGN – static level

 AWGN – dynamic level (step response)

 Dropouts

 In-band and adjacent channel interference

 Phase noise

 Timing jitter

 Static multipath

 Test procedures are being developed to evaluate accuracy of DQM
 Targeted for inclusion in IRIG 118
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DQM Calibration Fixture

 Synthesize “impaired” RF signal

 Recover the “corrupted” data (with clock)

 Extract the frame sync word, including DQM

 Measure BER of payload data

 Compare DQM (converted to BEP) to measured BER
 Recorded and stored on a packet-by-packet basis
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DQM Calibration in AWGN

 Required as a baseline for all other tests
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DQM Step Response

 Assesses timeliness of DQM values

 UUT stays synchronized during test

One block  at each step is 
a blend of the two states
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DQM Fade Recovery

 Includes UUT synchronization time



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com152

DQM Interference Test

 Interference is not AWGN, but it causes bit errors
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DQM in Multipath

 Test run at high signal level – essentially no noise
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Does it work?

 Four “poor” channels for input to BSS

 One nearly error-free output from BSS
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BSS Summary

 Correlating (time-aligning) source selectors deliver 
output data that is better than any single input stream

 Combats all forms of signal impairment
 Noise

 Multipath

 Interference

 Shadowing

 Loss of antenna track

 Diversity can be in any form
 Polarization

 Frequency

 Spatial

 DQE / DQM equip the BSS to make optimal decisions



Space-Time Coding
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Polarization
receive diversity

Space-Time Coding

Air vehicle maneuvering
masks Tx antenna and
causes polarization mismatch

Ground bounce
creates multipath
interference

Spatial transmit diversity

Ronald C. Crummett, Michael A. Jensen, Michael D. Rice

Department of Electrical and Computer Engineering

Brigham Young University
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Difficulties with TX Diversity
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MIMO Communications

MIMO: Multiple-Input Multiple-Output
Exploit multiple communication modes

HSpace-Time
Encoder

Data
Space-Time

Decoder

Data

Potential Benefits: 

• Diversity (robust communications)

• Increased data throughput
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Alamouti Space-Time Coding

A  B  C  D  E  F  G  H  I  J  K  L ...

space-time
encoder

A -B* C -D* E -F* G -H* I -J* K -L* ...

B  A* D  C* F  E* H  G* J  I* L  K* ...

traditional

1st block 2nd block

• 2 transmit antennas + 1 receive antenna version

• 2 transmit antennas + 2 receive antennas version

• Calderbank showed that the Alamouti schemes are special cases of more 
general “orthogonal designs”
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Traditional Transmission

Each symbol is simultaneously sent from both antennas

Received signal energy

With the noise energy as No, the received SNR is
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Alamouti Space-Time Coding

Signal energy over one symbol time:

Received noise energy:

Signal-to-Noise Ratio:
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Symbol Error Rate - QPSK

P E( ) = 2Q
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Symbol Error Rate - QPSK

For Alamouti signaling
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Consider BPSK Signaling and Assume s1 = s2 = 1
Time Slot 1:

Gain Pattern: 

Time Slot 2:
Gain Pattern:

Alamouti Scheme
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Symbol Error Rate

Similar expressions have been derived for:

• Polarization diversity at receiver (Maximal Ratio combining)

• One multipath (ground) bounce

• BPSK and 16-QAM signal constellations

for both Traditional Signaling and Alamouti Signaling
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SER Simulations
Antenna Separation: 20’ Horizontal, 8’ Vertical
Antenna Patterns: Isotropic

Simple 
AWGN 

Channel
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SER Simulations

Results Identical to Single Receive Antenna System 

Circular

Polarization 
Diversity 

Reception
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C-12 Beechcraft: Airborne Platform



Antenna Locations
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Flight Tests: Idealized Gain Patterns
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Flight Tests: Ground Station Configuration
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LNA

Bldg 4795: “Antenna 5”
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Receiver
1514.5 MHz
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Data
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Data 
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Test Flights: Ground Station Configuration
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STC Video Clip

177



M1: Left-Hand Turn @ 10° bank
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M1: Test Results
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M2: Right-Hand Turn @ 10° bank
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M2: Test Results

181



M3: Left-Hand Turn @ 30° bank
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M3: Test Results
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M4: Right-Hand Turn @ 30° bank
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M4: Test Results
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M3 to C2 Transition
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M3 to C2 Transition Test Results
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C2: Cords Road West-to-East
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C2: Test Results
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D2: Cords Road East-to-West
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D2: Test Results

191
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STC Summary

Dual-Antenna Diversity Scheme 
 Removes interference created by multiple transmit 

antennas
 SNR equivalent to single antenna transmission

 Multi-antenna scheme alleviates masking during maneuvering

 Can be used with diversity reception

 Realtime hardware flight tested at Edwards AFB and 
showed substantial performance benefit



Forward Error Correction
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Forward Error Correction

 Basic premise
 Insert redundant bits into transmitted stream

 Use known relationships between bits to correct errors

 Countless schemes have been developed
 Convolutional code / Viterbi decoder

 Block codes
 BCH

 Reed-Solomon

 Concatenated codes
 RS / Viterbi

 Turbo product codes (TPC)

 Low Density Parity Check (LDPC)



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com195

LDPC Codes - History

 LDPC: Low Density Parity Check

 Linear block codes
 Some are systematic

 Developed by Robert G. Gallager at M.I.T. in 1960
 Published by the M.I.T Press as a monograph in 1963

 No practical implementations at that time

 Re-discovered by David J.C. MacKay in 1996
 Began displacing turbo codes in the late 1990s

 Recent history
 2003: LDPC code selected for the new DVB-S2 standard for the satellite digital TV

 2006: LDPC code selected for 10GBase-T Ethernet (10 Gbps over twisted-pair cables)

 2007: LDPC codes published by CCSDS as an “Orange Book”

 2008: LDPC code selected for the ITU-T G.hn standard

 2009: LDPC codes adopted for Wi-Fi 802.11 High Throughput (HT) PHY specification

 2012: LDPC code selected for integrated Network Enhanced Telemetry (iNET)
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LDPC AR4JA Codes

 AR4JA: Accumulate-Repeat-4-Jagged-Accumulate

 Published by CCSDS as an “Orange Book”
 Low Density Parity Check Codes For Use in Near-Earth and Deep Space Applications

 Defines a family of systematic LDPC codes

 Defines attached sync markers (ASM) 
 Specified in section 6 of CCSDS Recommended Standard CCSDS 131.0-B-1

 Present work based on the (6144, 4096) code
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Packet Assembly

 Input 4096 data bits
 Randomize prior to encoding, if necessary

 Compute and append 2048 parity bits

 Prepend 256-bit attached sync marker (ASM)
 Yields a 6400-bit packet

 Each and every code word carries the ASM:  A, A, Ā, A
 A = FCB88938D8D76A4F

 Ā = 034776C7272895B0

 Synchronization requires at most one code word

A A Ā A 4096 Data Bits 2048 Parity bits
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Spectral Characterization
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Fractional Out-of-Band Power
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Decoder

 Demodulate SOQPSK with soft decisions
 Implemented 8-bit decisions

 Iterative decoders work best with high resolution soft decisions

 Estimate Eb/N0 for soft decision scaling

 Correlate for ASM with hard decisions
 Resolves the 4-ary phase ambiguity in SOQPSK

 Virtually certain sync at Eb/N0 = 0 dB

 Initialize decoder

 Execute decode iterations until next code word
 Coding gain varies with bit rate
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Measured BER Results
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LDPC from Appendix 2-D 
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BER – All Modes 
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Conclusions

 Rate 2/3 LDPC code yields ≈9 dB coding gain relative to uncoded 
SOQPSK
 ±0.5 dB, depending on data rate

 256-bit ASM provides reliable, fast synchronization at Eb/N0 < 0 dB

 Synchronization is consistently achieved in < 4096 data bits

 Bandwidth expansion of 25/16
 Still 22% less bandwidth than legacy PCM/FM

 SOQPSK with LDPC offers a reasonable trade of spectral efficiency 
for a significant gain in detection efficiency

 5 other LDPC codes offer similar trade of bandwidth for BER 
performance



How Well Does It All Work 
Together?

Yuma Proving Grounds, AZ

Feb 8-11, 2016
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Recipe for Delivering Every Bit

 Space Time Coding (STC)
 Eliminates aircraft pattern nulls

 Low Density Parity Check (LDPC) coding
 Improves margin, stops “dribbling errors”

 Adaptive Equalization (for non-STC signals)
 Mitigates multipath

 Spatial diversity with correlating source selection
 Eliminate coverage-based dropouts

 Requires DQE/DQM for optimal operation

 TMoIP makes delivery easy
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Multiple Receiving Sites

Best Source Selector used 6 
inputs: Ch1, Ch2 from each 
source, but not the combiner 

outputs (not enough 
channels).
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Dual Transmitter – S band – 10 W each output

Installed in UH-1 (Huey) 
helicopter with top and 
bottom blade antennas
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YPG Test 
Sites

Site CM4

Site 2

Site 4

Site 4 to Site CM4 = 14.25 mi

Laguna Airfield
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Analysis using Data Logs

Ch1, 
Ch2
DQE

Ch1, 
Ch2
DQE

Ch1, 
Ch2
DQE

Site 4

‘Best’

F1

Ch1 Ch2

F2
Site 2

F1

Ch1 Ch2

F2
CM4

F1

Ch1 Ch2

F2

F1
Top

Antenna

F2
Bottom
Antenna

 Transmit F1-Top, F2-
Bottom

 3 Receive Sites

 6 Clock & Data 
streams provided to A-
CSS with Data Quality 
Encapsulation (DQE)

 DQE = Receiver 
inserts periodic 
estimate of 
instantaneous BEP

 Items of interest
 Top vs Bottom Antenna

 Individual Site 
Performance

 Source Selector 
Performance

Receiver 
Analyzer

BERT Log

Receiver Analyzer Log
(BER of A-CSS output)

A-CSS Log
(BEP of each time-

aligned source)

Data Log on
Each Receiver

(BEP, BER, RSSI,...)
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Flight 1 – PCM/FM 5 Mbps
Link Availability Summary (PN23 BER)
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Flight 2 – SOQPSK 5 Mbps
Link Availability Summary (PN23 BER)
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Flight 3 – SOQPSK 20 Mbps
Link Availability Summary (PN23 BER)
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Flight 4 – STC/LDPC 5 Mbps
Link Availability Summary (PN23 BER)
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The elusive zero-error link…..

 STC/LDPC from 3 sites 
at 5 MBPS

 1st pass PN23 -- 34 
minutes of helicopter 
flight across YPG…

 Error-free!

 2nd pass video with no 
freeze ups or blackouts!



Performance Comparison and 
Summary
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Power Spectral Densities



2017 International Telemetering Conference
Terry Hill - thill@quasonix.com218

Out-of-Band Power
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BER Performance Comparison
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Bandwidth-Power Plane
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