Quasonix

DATA QUALITY METRIC (DQM) – HOW ACCURATE DOES IT NEED TO BE?

ITC 2023

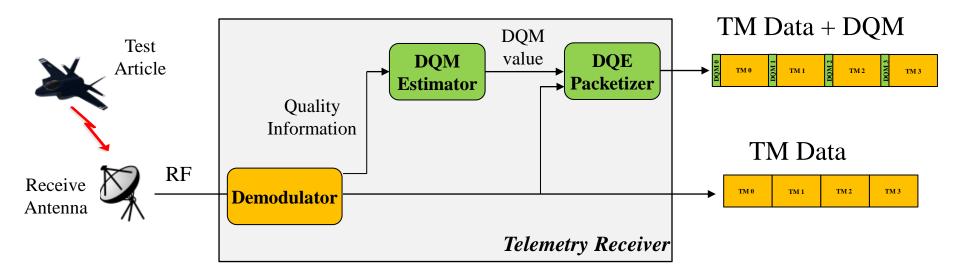
Mark Geoghegan Quasonix, West Chester, OH markg@quasonix.com

DQE/DQM Background

Milestones	Contributions
2015 Hill ITC Paper - "Metrics and Test Procedures for Data Quality Estimation in the Aeronautical Telemetry Channel"	DQE/DQM transport protocol to support efficient multiple source TM combining
2015 Rice/Perrins ITC Best Paper -"Maximum Likelihood Detection from Multiple Bit Sources"	Optimal combining recipe and performance analysis - Maximum Likelihood Bit Detection (MLBD)
<i>IRIG 106-22 Chapter 2, Appendix 2-G</i> - "Standards for Data Quality Metrics and Data Quality Encapsulation"	Standardized in IRIG 106-22
2022 Temple ITC Paper - "Some Thoughts on Testing the Data Quality Metric"	Proposed DQE/DQM verification test methods
<i>IRIG 118-22 Release 2 Volume 2., Chapter 11, 2022</i> "Test procedures for assessing telemetry receiver data quality metrics"	DQE/DQM verification test methods standardized in IRIG 118-22
Industry Day on DQE/DQM assessment 10/28/22	Initial multi-vendor DQE/DQM performance/compatibility testing

Data Quality Metric (DQM)

- 16 bit value that indicates the BEP for a 'single' block of TM data bits
- Periodically inserted in TM data output stream

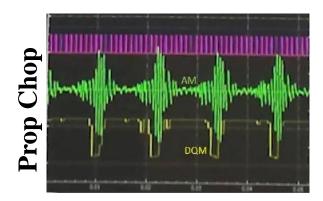


"Gambling Quality Metric (GQM)"

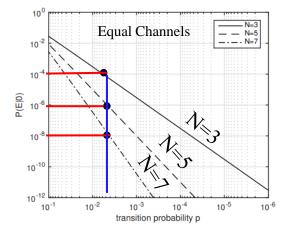
- Probability of winning for the next N plays
- Play multiple games simultaneously to further improve odds!
- Don't get excited, it doesn't exist...

DQM Telemetry Applications

- Provides estimate of TM quality without a priori knowledge of data.
- Provides real-time indication of the TM channel.



- Provides sufficient information for optimal multi-channel telemetry reception.
 - Potential for virtually 'error-free' telemetry.



BEP=10⁻⁵

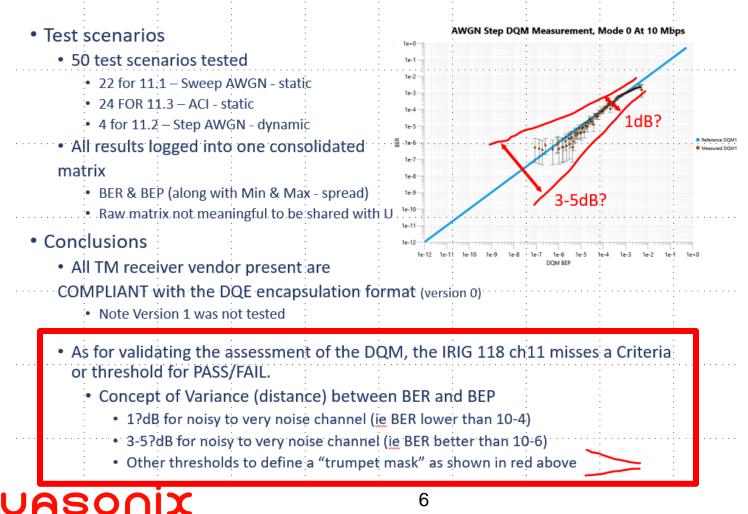
BEP=10⁻¹

5

1

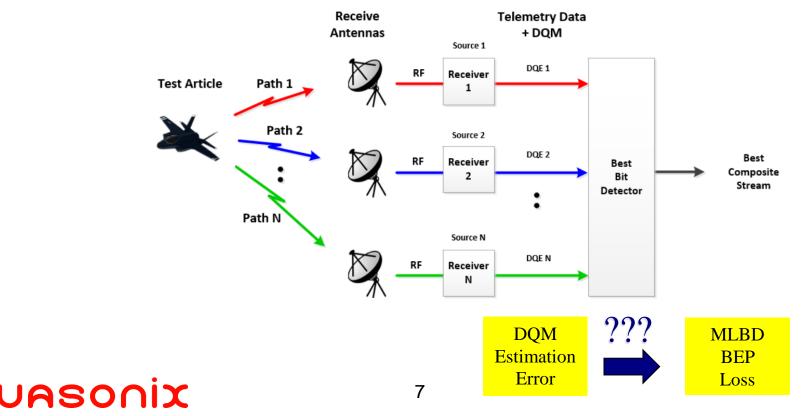
Industry Day (10/22) - Preliminary DQE/DQM integration (RFVWG meets RCC TG RF Systems - Yuma March 2023 - Final.pdf)

DQM assessment results at a glance



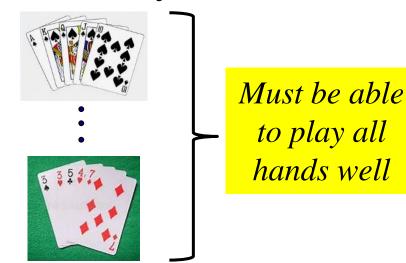
DQM Accuracy: How good is good enough?

- How accurate does the DQM estimate need to be to not "significantly" degrade the MLBD output performance?
- Need to understand relationship between DQM and MLBD



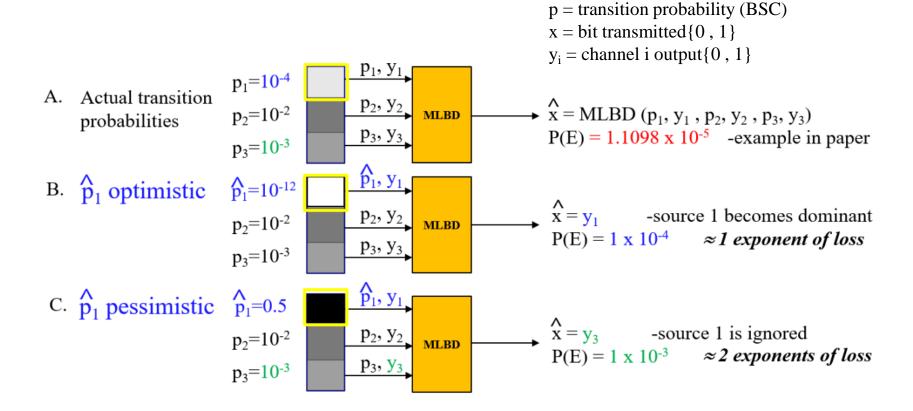
Aeronautical Telemetry channels

- Variety of channel conditions
 - ◆ AWGN, ACI, Multipath, Flat Fading, Interference
- 2022 ITC Kip Temple paper (DQM testing)
 - "The DQM must be relevant for all channel conditions or sources of signal corruption that may exist during telemetry operations."
 - "The key to assigning a DQM value is an <u>accurate</u> and <u>consistent</u> estimate of the bit error probability that applies to the <u>data that follows the estimate</u>."
- Can't control the hand that you're dealt!



How does DQM affect MLBD?

• Example: Extreme over and under estimation



Misestimation of p can degrade MLBD performance

MLBD Calculations (Ideal and estimated DQM) Ideal DQM

 Bit decision is based on comparison of LLR sums of group that votes 0 versus 1

$$\sum_{n \in \mathcal{N}_{0}} \log \left(\frac{1 - p_{n}}{p_{n}} \right) \gtrless \sum_{n \in \mathcal{N}_{1}} \log \left(\frac{1 - p_{n}}{p_{n}} \right) \xrightarrow{\mathbf{x} = 0} P_{e} = \sum_{i \in \mathcal{I}_{+}} P[i]$$
• Estimated DQM
$$\sum_{n \in \mathbb{N}_{0}} \log \left(\frac{1 - \hat{p}_{n}}{\hat{p}_{n}} \right) \gtrless \sum_{n \in \mathbb{N}_{1}} \log \left(\frac{1 - \hat{p}_{n}}{\hat{p}_{n}} \right) \xrightarrow{\mathbf{x} = 0} \hat{P}_{e} = \sum_{i \in \hat{\mathcal{I}}_{+}} P[i]$$

MLBD probability of error for ideal and estimated DQM

Bias

$$\log\left(\frac{1-\hat{p}_n p_{bias}}{\hat{p}_n p_{bias}}\right) \xrightarrow{\hat{p}_n p_{bias} \ll 0} -\log\left(\hat{p}_n\right) - \log\left(p_{bias}\right)$$

Systematic estimation bias offsets all terms

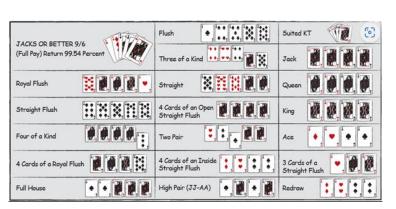
MLBD calculations are just like "Perfect Play" tables (fixed)

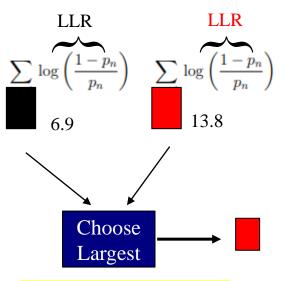
- Procedure to play each hand for maximum possible return
- Note: These are fixed tables (best way to play all possible hands)

Blackjack

		D	EA	LEF	SL	JP-	CAI	RD			
		2	3	4	5	5	7	8	9	10	A
	8-3	H	H	H	H	H	H	H	H	H	H
	9	H	DD	DD	DD	DD	Η	Η	Η	H	H
	10	DD	DD	DD	DD	DD	DD	DD	DD	H	H
	11	DD	DD	DD	DD	DD	DD	DD	DD	DD	DD
	12	H	H	S	S	S	Η	Η	H	H	H
	13	S	S	S	S	S	H	H	H	H	H
	14	S	S	S	S	S	Н	H	H	H	H
P	15	S	S	S	S	S	н	H	H	H	H
L	16	S	S	S	S	S	H	H	Η	H	H
A	A-2	H	H	DD	DD	DD	H	Η	Н	H	H
Y	A-3	H	н	DD	DD	DD	H	Η	н	Η	H
È	A-4	H	H	DD	DD	DD	H	Η	н	Η	Η
R	A-5	H	H	DD	DD	DD	H	Η	н	H	Η
s	A-6	H	Η	DD	DD	DD	Η	Η	Η	H	Н
	A-7	S	DD	DD	DD	DD	S	S	н	H	Н
н	A-8	S	S	s	S	S	S	S	S	S	S
A	A-9	S	S	S	S	S	S	s	S	s	s
N	2-2	H	H	SP	SP	SP	SP	H	H	H	Η
D	3-3	H	H	SP	SP	SP	SP	H	H	H	H
	4-4	H	Η	н	Η	H	Η	Η	Η	H	H
	5-5	DD	DD	DD	DD	DD	H	H	H	Η	Η
	6-6	SP	SP	SP	SP	SP	Η	Η	H	H	н
	7-7	SP	SP	SP	SP	SP	SP	H	Η	H	H
	8-8	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP
	9-9	SP	SP	SP	SP	SP	s	SP	SP	s	s
	10-10	s	S	S	S	S	s	S	S	S	S
	A-A	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP

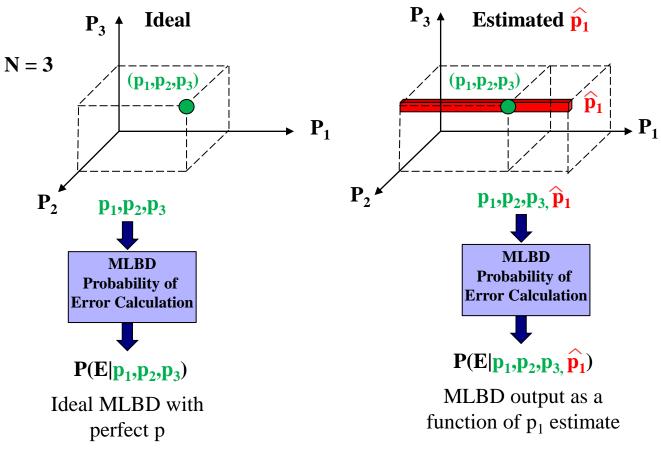
Video Poker (Jacks or Better)





Fun Fact - Brute force DQM MLBD card has 2^{((16+1)N)} rows!

MLBD Simulation Approach (compute loss over all combinations)



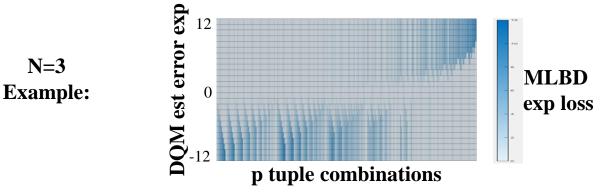
Probability Cost = $P(E|p_1,p_2,p_3) - P(E|p_1,p_2,p_3,p_1)$

Error Exp Cost = log10(P(E|p_1,p_2,p_3)) - log10(P(E|p_1,p_2,p_3,\hat{p}_1)))

Simulation Parameters (start out simple)

DQM resolution

- IRIG standard $2^{16} = 65536$ values BEP=0.5 to 10^{-12}
- Start with reduced resolution of 1 exponent (0 to 12)
- N > 2 but unknown
 - Start with reasonable number of sources N=3,5,7
- Math Equation vs Monte Carlo
 - Prove that P(E) formulas agree with brute force
- Gain understanding of basic relationships

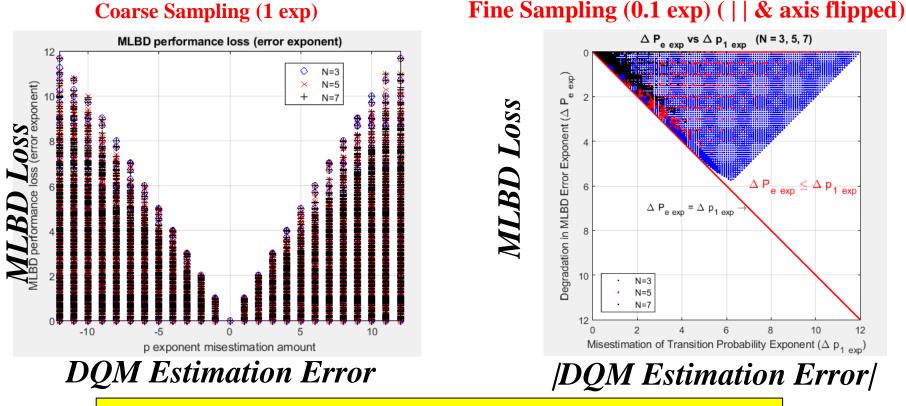


Simulation Results

Quasonix

• Calculate MLBD performance loss vs estimation error

Error Exp Cost = log10(P(E|p_1,p_2,p_3)) -log10(P(E|p_1,p_2,p_3,\hat{p}_1)))



Simulations suggest that MLBD loss exponent is bounded by DQM estimation error exponent!

14

Can this bound be shown to apply for all N and p tuples?

- When all else fails, dig into the math...
- What does it take to degrade P(E)?
 - Answer: Adjust p₁ to flip the smallest positive M[i] negative
- Math required to degrade MLBD (see appendix for details)

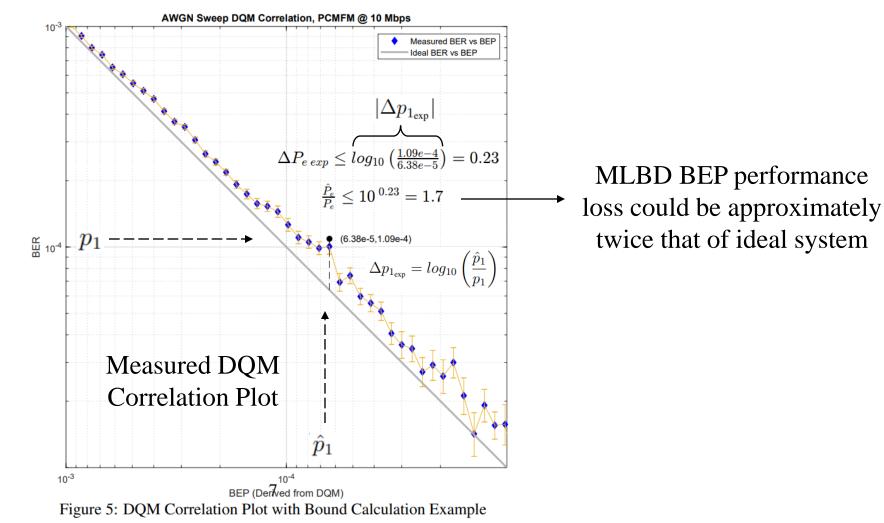
$$\begin{split} \log\left(\frac{1-\hat{p}_1}{\hat{p}_1}\right) &= \log\left(\frac{1-p_1}{p_1}\right) + M[i_{\min+}] &\implies \hat{p}_1 = \frac{p_1}{p_1 + (1-p_1)e^{M[i_{\min+}]}}\\ \hat{P}_e &= \sum_{i \in \mathbf{I}_+} P[i] - P[i_{\min+}] + P[i_{\max-}] \end{split}$$
 Smallest change in \hat{p}_1 to degrade \hat{P}_e

$$\Delta p_{1_{\exp}} = \log_{10} \left(\frac{\hat{p}_1}{p_1} \right) \quad , \quad \Delta P_{e_{\exp}} = \log_{10} \left(\frac{\hat{P}_e}{P_e} \right)$$

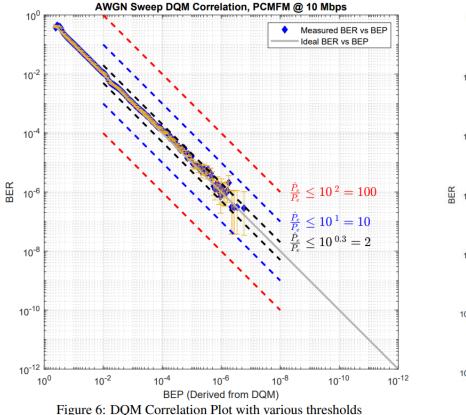
 $\frac{\text{MLBD Loss} \quad \text{DQM Error}}{\Delta P_{e_{\text{exp}}} \leq |\Delta p_{1_{\text{exp}}}|}$

Mathematical analysis shows that MLBD loss exponent is bounded by DQM estimation error exponent regardless of N or p!

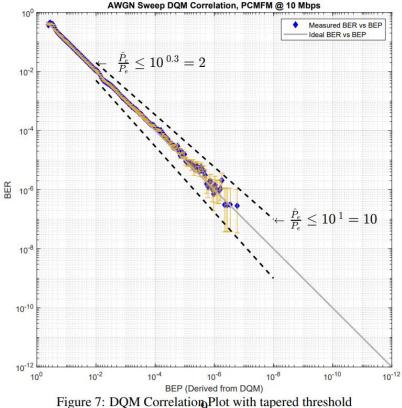
Implication on DQM accuracy



DQM measurement thresholds along with maximum MLBD system loss



QUASONIX



RCC has a new tool to understand implications of DQM accuracy thresholds

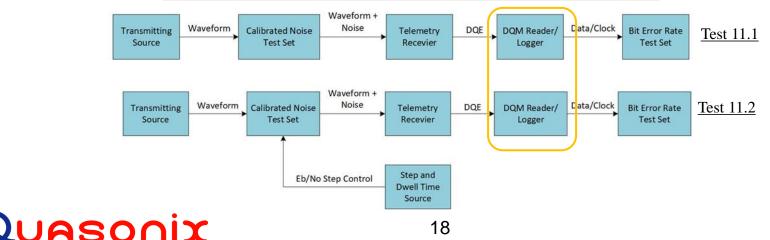
17

DQM testing standard

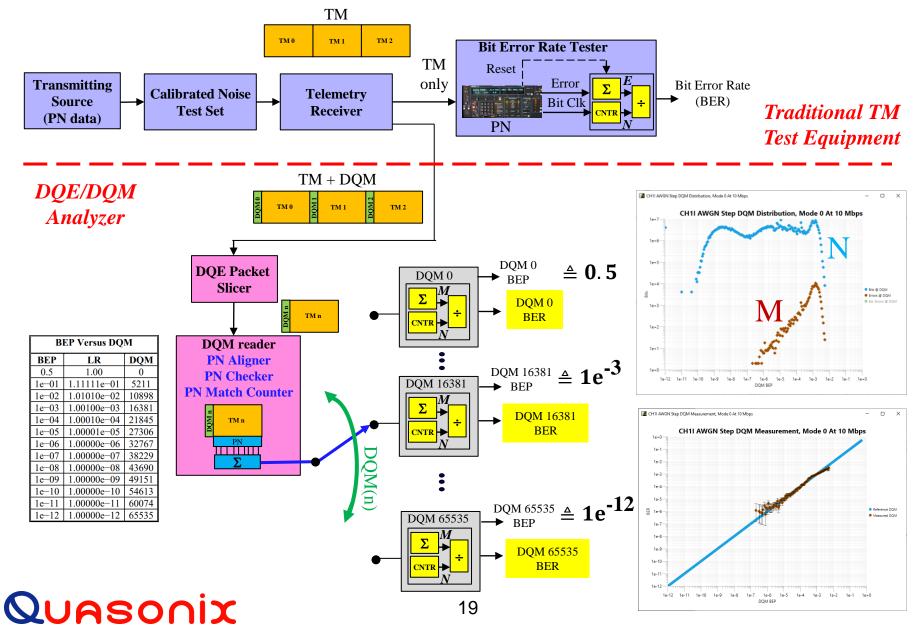
- 2022 ITC Temple paper "Some thoughts on testing the Data Quality Metric"
 - "The key to assigning a DQM value is an <u>accurate</u> and <u>consistent</u> estimate of the bit error probability that applies to the <u>data that follows the estimate</u>."
 - "The DQM must be relevant for all channel conditions or sources of signal corruption that may exist during telemetry operations."
- IRIG 118-22 Release 2 Volume 2 Chapter 11

https://www.trmc.osd.mil/wiki/download/attachments/113019772/118-22_Vol%202R2-Test_Methods_TM_Systems_Subsystems.pdf?version=1&modificationDate=1665520822889&api=v2

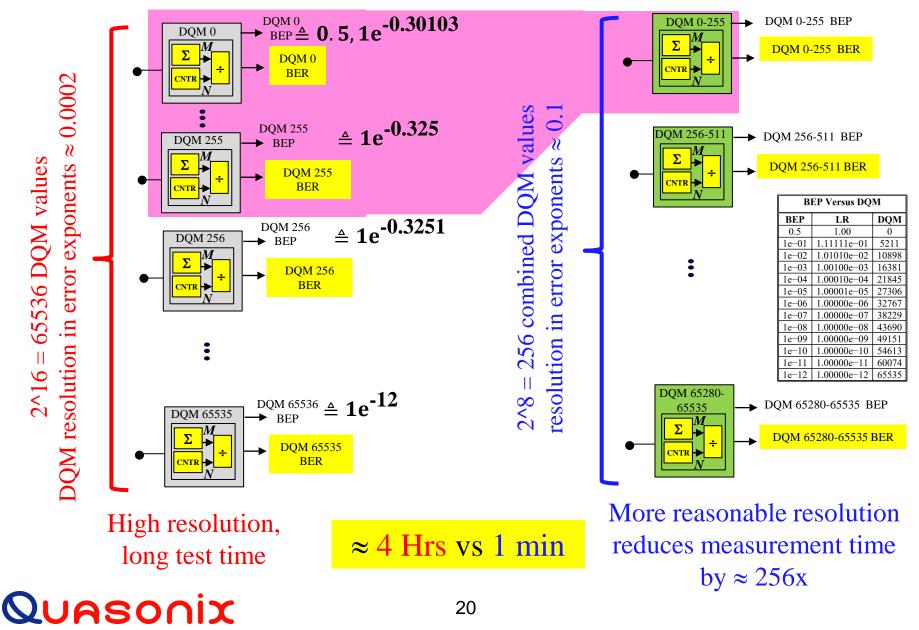
Table 11-2. Test Matrix for Data Quality Metric Testing								
Test Number Test Description								
11.1	BER vs BEP with Additive Noise							
11.2	DQM (BEP) Step and Dwell Response							
11.3	BER vs BEP with Adjacent Channel Interference							
11.4	BER vs BEP for Static 3-Ray Multipath Channel Conditions							
11.5	BER vs BEP for Static 2-Ray Multipath Channel Conditions							
11.6	DQM (BEP) Resynchronization Response							



DQM testing – setup and measurements



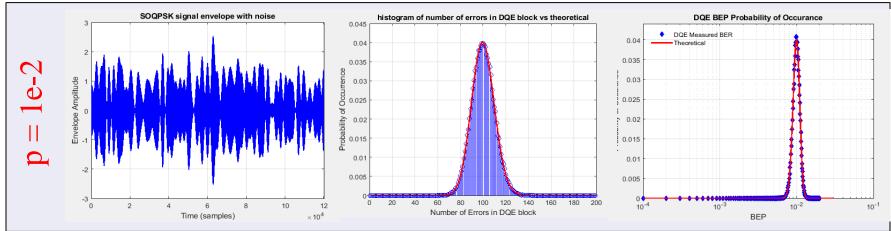
DQM BER resolution vs measurement time ("binning")

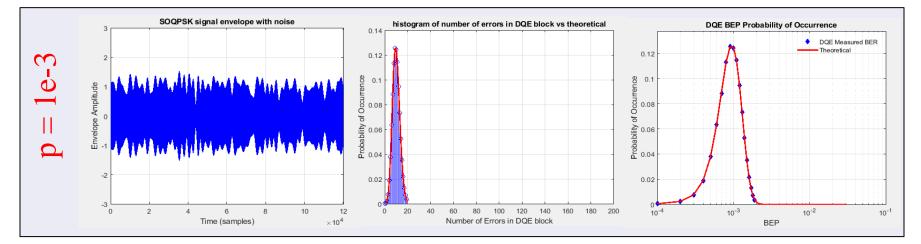


blocks of data are not guaranteed to occur so uniformly. Let *E* be the number of bit errors in a block of *n* bits. For a transmitted word of size *n* with independent bit errors, the probability of having fewer than or equal to *t* errors, Pr(E < t) can be straightforwardly obtained from (6) as

Ideal DQM distribution vs p Example (AWGN) n=10000

 $\Pr(E \le t) = \sum_{i=0}^{t} \binom{n}{i} P_b^{i} (1 - P_b)^{n-i}.$ (7)

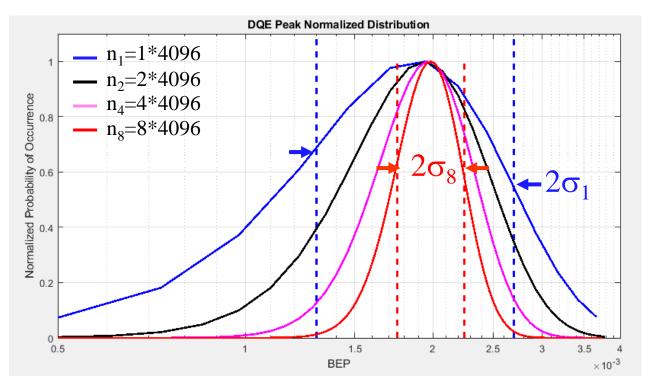




Distribution of ideal DQM values changes with p

Ideal DQM distribution vs Block Size n

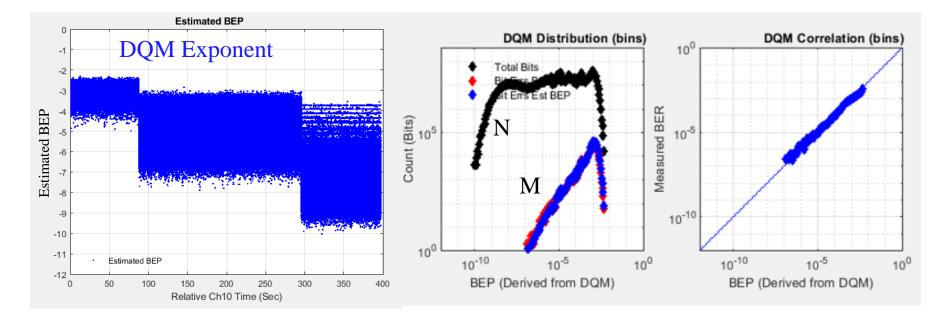
- Example: n=4096, p = 2e⁻³
- As span increases, DQM distribution narrows



Distribution of ideal DQM values changes with block length n

Measured example from Industry Day Testing 10/28/22

4	ITC_5M_2022-301T	16_05_35Z.ch10	В						Eb/N0 = 6dB
5	0	397		11.1 (AWGN sweep)	S-band	2225MHz	Tier0 (MS)	5Mbps (high rate)	Eb/N0 = 8dB
6									Eb/N0 = 10dB



Time Domain

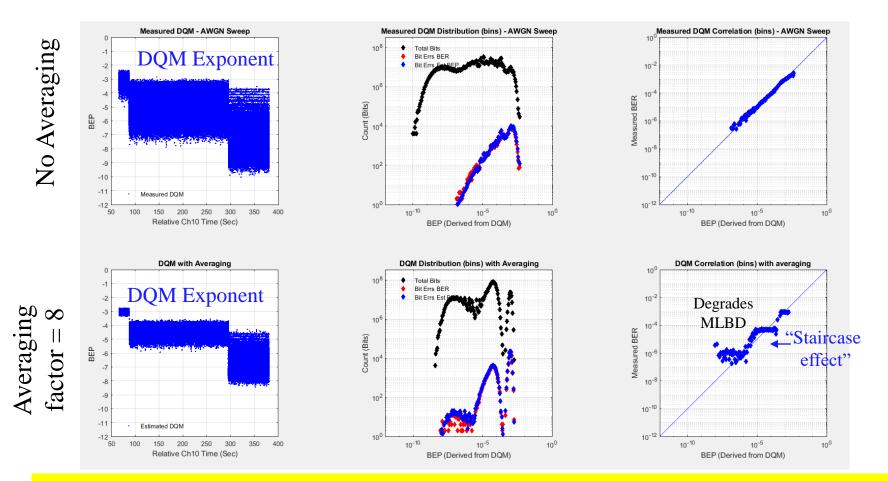
DQM Distribution

DQM Correlation

Key Performance Plot!

Effect of DQM "Averaging"

(Possibly using a parameter estimated at a rate much slower than DQE frames)



DQM averaging beyond one DQE packet degrades MLBD even in a static channel. (Why? Result is based on a different DQM distribution than the MLBD is observing)

DQM Accuracy Conclusions

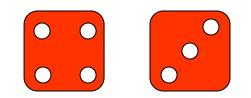
- □ Multiple receive channels can significantly improve the system BEP.
- The DQE/DQM RCC IRIG standard supports optimal processing for multichannel telemetry reception.
- □ Accurate DQM values are a vital ingredient in achieving good performance.
- Common DQM estimation biases between receivers tend to cancel due to the differential nature of the metric calculations.
- Testing and verification methods are currently being developed to ensure vendor compatibility and consistent performance.
- It was shown that the performance degradation of the MLBD in error exponents is bounded by the estimation error exponent in DQM regardless of p's or N!

MLBD Loss DQM error $\Delta P_{e_{\text{exp}}} \leq |\Delta p_{1_{\text{exp}}}|$

• Results from this paper can assist standards organizations in developing meaningful DQM testing thresholds.

Thank you !!! Questions?

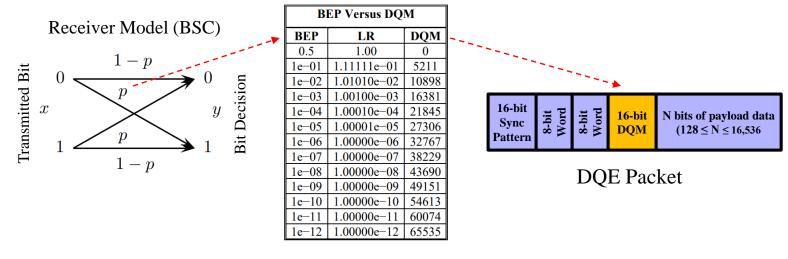
GOOD LUCK!



Backup Slides

2015 Hill ITC Paper – DQE/DQM protocol

- Diversity can provide tremendous improvements in link performance
- Problem: How to provide combiner with quality information from multiple sites?
- Proposed a protocol to insert timely quality information directly into the TM stream

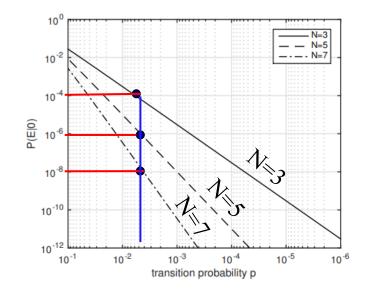


2015 ITC Rice/Perrins Paper – MLBD

- Analyzed the optimal bit detection strategy using multiple sources
- Proved that the transition probability p is a sufficient metric for optimum detection performance.
- Derived MLBD detection rule and probability of error.
- Best ITC paper of 2015

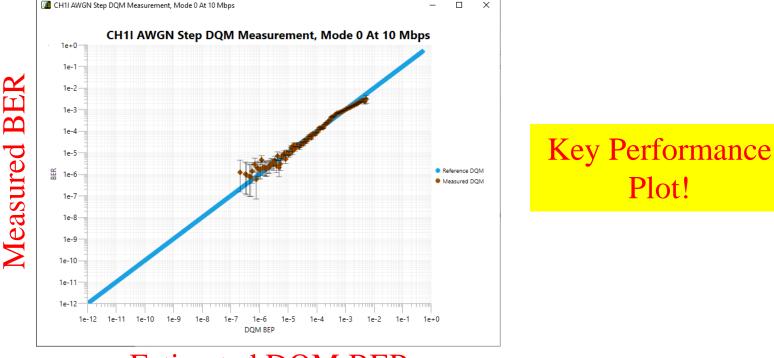
 $\hat{x} = 0 \iff \sum_{n \in M_{0}} \log\left(\frac{1-p_{n}}{p_{n}}\right) > \sum_{n \in M_{0}} \log\left(\frac{1-p_{n}}{p_{n}}\right) > \sum_{n \in M_{0}} \log\left(\frac{1-p_{n}}{p_{n}}\right)$

Equal Channels $(p_1=p_2=...=p_N)$



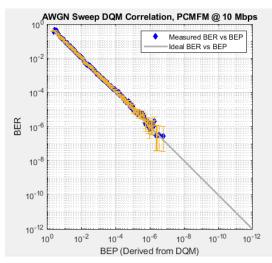
DQM Correlation Plot (measured BER vs. estimated BEP)

- The y-axis is the measured BER for each point (labeled "BER").
- The x-axis is the estimated BEP associated with each point (labeled "DQM BEP")
- Ideal performance is when measured BER equals estimated BEP (blue line)



Estimated DQM BEP

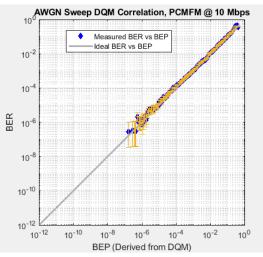
DQM Correlation Plot Representation



Representation used in the paper – looks more like a traditional BER curve

Quasonix

Equivalent Information



Conventional correlation plot with positive slope that clearly indicates direct or inverse relationship

MLBD Calculations

 Bit decision is based on comparison of LR sums of group that votes 0 versus 1

$$\sum_{n \in \mathcal{N}_0} \log\left(\frac{1-p_n}{p_n}\right) \gtrless \sum_{n \in \mathcal{N}_1} \log\left(\frac{1-p_n}{p_n}\right)$$

Assume x=0

-	-	y	$y_1 y_2$	y_3	probability	$\sum_{\mathcal{N}_0}$	$\sum_{\mathcal{N}_1}$	
<u>Bit</u>	<u>Decision</u>) ()	0	$(1-p_1)(1-p_2)(1-p_3) = 9.8891 \times 10^{-1}$	20.7	0	
N=3	$p_1 p_2 p_3$	(0 0	1	$(1-p_1)(1-p_2)p_3 = 9.9890 \times 10^{-3}$	16.1	4.6	
Example		() 1	0	$(1-p_1)p_2(1-p_3) = 9.8990 \times 10^{-4}$	13.8	6.9	
from paper:	1e-4 1e-3 1e-2) 1	1	$(1-p_1)p_2p_3 = 9.9990 \times 10^{-6}$	9.2	11.5	
nom paper.	4 3 2		1 0	0	$p_1(1-p_2)(1-p_3) = 9.8901 \times 10^{-5}$	11.5	9.2	
			1 0	1	$p_1(1-p_2)p_3 = 9.9900 \times 10^{-7}$	6.9	13.8	
	9.2 6.9 4.6		1 1	0	$p_1 p_2 (1 - p_3) = 9.9000 \times 10^{-8}$	4.6	16.1	
			1 1	1	$p_1 p_2 p_3 = 1.0000 \times 10^{-9}$	0.0	20.7	
	9.2 < 11.5	P(E 0) =	= 9.999	$P_e = \sum P[i] \mathbf{P(E)} = 1.109$			
	•				$I_e = \sum_{i \in \mathcal{I}_+} I_i[i] \mathbf{I}(\mathbf{E}) = 1.10$	/UC-J	,	
JUAS	OUIX		32		MLBD probability of error			

MLBD calculation with **p** estimation error

p ₁] 1e-4 1	_] 1e	C	Actual p_1, p_2, p_3	Estimated $\hat{p}_1, \hat{p}_2, \hat{p}_3$ $log\left(\frac{1-\hat{p}_1}{\hat{p}_1}\right), log\left(\frac{1-\hat{p}_2}{\hat{p}_2}\right), log\left(\frac{1-\hat{p}_3}{\hat{p}_3}\right)$
-	y_1	y_2	y_3	probability	Σ_{N_0} Σ_{N_1}
	0	0	0	$(1-p_1)(1-p_2)(1-p_3) = 9.8891 \times 10^{-1}$	
	0	0	1	$(1-p_1)(1-p_2)p_3 = 9.9890 \times 10^{-3}$	$\sum_{n \in \mathbb{N}_0[i]} \log\left(\frac{1-\hat{p}_n}{\hat{p}_n}\right) \sum_{n \in \mathbb{N}_1[i]} \log\left(\frac{1-\hat{p}_n}{\hat{p}_n}\right) \hat{P}_e = \sum_{i \in \hat{\mathcal{I}}_+} P[i]$
	0	1	0	$(1-p_1)p_2(1-p_3) = 9.8990 \times 10^{-4}$	$\sum_{n \in \mathbf{N}_0[i]} \log \left(\frac{\hat{p}_n}{\hat{p}_n} \right) = \sum_{n \in \mathbf{N}_1[i]} \log \left(\frac{\hat{p}_n}{\hat{p}_n} \right) = 1 e \sum_{i=1}^n 1 \left[e \right]$
	0	1	1	$(1-p_1)p_2p_3 = 9.9990 \times 10^{-6}$	
	1	0	0	$p_1(1-p_2)(1-p_3) = 9.8901 \times 10^{-5}$	Weighting of sources is
	1	0	1	$p_1(1-p_2)p_3 = 9.9900 \times 10^{-7}$	based on <i>estimated</i> channel
	1	1	0	$p_1 p_2 (1 - p_3) = 9.9000 \times 10^{-8}$	error probabilities from
	1	1	1	$p_1 p_2 p_3 = 1.0000 \times 10^{-9}$	receiver

Probability of (y_1, y_2, y_3) symbols are based on the actual channel transition probabilities

MLBD probability of error with \hat{p} estimate

$$\log\left(\frac{1-\hat{p}_n p_{bias}}{\hat{p}_n p_{bias}}\right) \xrightarrow{\hat{p}_n p_{bias} \ll 0} -\log\left(\hat{p}_n\right) - \log\left(p_{bias}\right)$$

Systematic estimation bias offsets all terms

Can this bound be shown to apply for all N and p tuples?

- When all else fails, dig into the math...
- What does it take to degrade P(E)?
 - Answer: Adjust p₁ to flip the smallest positive M[i] negative

N=3, $p_1 = 10^{-4}$, $p_2 = 10^{-3}$, $p_3 = 10^{-2}$						Metric	$s(p_1 = 10^{-4})$	Estima			
i	y1	y2	y3	Probability P[i]	\sum_{N_0}	\sum_{N_1}	M[i]	\sum_{N_0}	\sum_{N_1}	$\hat{M}[i]$	
0	0	0	0	9.8891 x 10 ⁻¹	20.7	0	-20.7	23.0	0	-23.0	
1	0	0	1	9.9890 x 10 ⁻³	16.1	4.6	-11.5	18.4	4.6	-13.8	
2	0	1	0	9.8990 x 10^{-4}	13.8	6.9	-6.9	16.1	6.9	-9.2	
3	0	1	1	* 9.9991 x 10 ⁻⁶	9.2	11.5	* 2.3	11.51	11.50	-0.01	-
4	1	0	0	9.8901 x 10^{-5} *	11.5	9.2	-2.3	11.50	11.51	0.01 *	
5	1	0	1	* 9.9900 x 10 ⁻⁷ *	6.9	13.8	* 6.9	6.9	16.1	9.2 *	
6	1	1	0	* 9.9000 x 10 ⁻⁸ *	4.6	16.1	* 11.5	4.6	18.4	13.8 *	
7	1	1	1	* 1.0000 x 10^{-9} *	0	20.7	* 20.7	0	23.0	23.0 *	
P[P[i]'s do not change due to estimation				P(E	0)=1.	1098 x 10^{-5}	$\hat{P}(I)$	E 0)=1	$.0000 \text{ x} 10^{-4}$	