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ABSTRACT

A Data Quality Encapsulation (DQE) protocol for improving telemetry link quality has recently
been standardized and added to IRIG 106. It periodically provides a Data Quality Metric (DQM)
required for optimal Maximum Likelihood Bit Detection (MLBD) when more than one receive
source is available. The resulting diversity can provide tremendous improvements in link quality.
In order to be effective, the estimated DQM value should respond quickly and accurately to reflect
the actual Bit Error Probability (BEP).

This paper investigates the MLBD performance loss caused by DQM estimation error. The objec-
tive is to gain insight into the sensitivity of the overall bit recovery system and to use the results
to help establish tolerance levels in DQM test procedures. This relationship provides the means
to guarantee that the DQM accuracy is sufficient to meet or exceed a specified level of system
performance which is the goal of DQM testing.
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INTRODUCTION

A Data Quality Encapsulation (DQE) protocol for improving telemetry link quality has recently
been standardized and added to IRIG 106 [1]. Current DQM test methods, such as those described
in RCC IRIG 118-22 Chapter 11 – “Test Procedures for Assessing Telemetry Receiver Data Quality
Metrics”, describe detailed test procedures and identify specific data to be collected. However, it is
unclear whether the observed DQM estimation performance is acceptable or not. In other words,
how good is good enough?
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To answer this question, one needs to understand how DQM accuracy impacts the performance of
the overall bit recovery process which is ultimate measure of system performance. The approach
to quantify how good is good enough begins with examining the basic characteristics of DQM and
the optimal bit processing method described by Rice and Perrins [2]. Next, mathematical analysis
and simulations will be used to evaluate the role that DQM plays in the bit recovery process. After
this relationship is developed, a method of establishing thresholds on DQM accuracy that bounds
the worst-case system BEP degradation will be presented.

DQE/DQM BACKGROUND

When multiple receive channels are available as shown in Figure 1, the performance of the com-
munication link may be significantly improved by combining the individual sources into a single
‘best’ composite stream. There are many approaches to combining including selective and major-
ity vote. Selective combining makes its decision solely based on the strongest individual channel,
while majority vote chooses the bit with the most votes as its combined decision. For channels
where one path is clearly dominant, selective combining works well while majority vote performs
poorly. Conversely, when all paths are of similar quality, majority vote works well and selective
combining is poor. The optimal combining approach makes its bit decision by comparing the
weighted sums of channel outputs of 0 and 1 and outperforms all other methods. The weighting is
based on the log-ratio of the error transition probability for each received channel.

Figure 1: Telemetry System with Multiple Receive Channels and Best Source Selector.

Optimal combining requires both the individual channel decisions as well as the current channel
error transition probabilities. A method for transporting telemetry data along with a data quality
metric is described in the RCC 106-22 telemetry standards chapter 2 section 2.7 appendix 2-G and
is a vital ingredient for supporting optimal Best Source Selection. It allows telemetry receivers to
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generate a serial stream that includes a standardized measurement of the real-time probability of
error for a grouping of bits. The DQE process is illustrated in Figure 2 where the receiver translates
the error transition probability p into a 16-bit DQM value that accompanies N bits of telemetry
payload. The basis for the protocol was initially described in “Metrics and Test Procedures for Data
Quality Estimation in the Aeronautical Telemetry Channel” by Hill [3]. The optimal processing
technique was presented in “Maximum Likelihood Detection from Multiple Bit Sources” by Rice
and Perrins [2]. Further work on how to test this capability was described in “Some Thoughts on
Testing the Data Quality Metric” by Temple [4]. Finally, approved test methods for evaluating
DQM performance were added to IRIG 118-22 Vol. 2 [5].

Figure 2: Data Quality Encapsulation (DQE) Packet Generation

EFFECT OF DQM INPUT ACCURACY ON MLBD ERROR PERFORMANCE

Although specific tests are defined for various channel conditions (AWGN, Flat Fading, Adjacent
Channel Interference, and Multipath), there is no criteria or defined thresholds for what level of
DQM accuracy is acceptable. The issue is that it is unclear how errors in DQM estimation degrade
the system BEP performance. Understanding this relationship would allow a telemetry engineer to
specify a maximum system degradation which would then bound the DQM estimation accuracy.
For example, imagine an ideal bit recovery device (perfect DQM + MLBD) that can operate at an
output BEP of 10−8. If one is willing to accept 10−7 from a real implementation, the limits on
DQM accuracy to guarantee that level of performance could be determined.

It is important to recognize that the optimal MLBD algorithm is a fixed set of deterministic calcula-
tions. The only quantities that are estimated are the input transition probabilities p1, p2, ..., pN . It is
analogous to a card game in which the channel outputs and their probabilities are the cards that are
dealt and the MLBD algorithm is a procedure to perfectly play each hand for maximum possible
return (lowest error probability). Accurately representing each hand and using the ‘perfect play’
recipe guarantees ideal play results. However, it will be shown that misestimating p can cause a
serious loss in MLBD performance.
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What happens when the estimate p̂ differs from the actual value of p? Figure 3 shows the results of
extreme over and under estimation using a channel example presented in [2]. With N=3, p = [10−4,
10−2, 10−3] the MLBD was shown to have a BEP of 1.1098 x 10−5 which has approximately one
order of error magnitude improvement over the best individual channel (p1 = 10−4). Now imagine
that p1 was optimistically misjudged and presented as p̂1 = 10−12. The MLBD algorithm would
now always choose y1 resulting in an output error rate of 10−4 which degrades the ideal system
error performance by one order of magnitude. Similarly, an overly pessimistic estimate of p̂1 = 0.5
would always cause channel 1 to be ignored and channel 3 to be selected resulting in an output
error rate of 10−3, a loss of two orders of error magnitude.

Figure 3: Example showing effect of extreme over and under estimation of p

A detailed performance analysis of the MLBD detector was presented in [2] that describes a
procedure for calculating its output error probability. First, all possible channel output tuples
[y1, y2, ..., yN ] were formed and indexed by their binary error pattern [i]. They are separated into
two sets (N0 or N1) based on their yn value. Assuming x = 0 was transmitted, the probability of
the i-th error pattern P[i] was computed by (1). For each error pattern, the MLBD metric M[i]
is calculated by summing the log-ratio of the transition probabilities pn for each set and taking
their difference as shown in (2). The set of indexes I+ identify which M[i] > 0 indicating tuples
where an error occurs. Finally, the sum of the probabilities over this set yield the final MLBD error
probability (3).

P [i] =
∏

nϵN0[i]

(1− pn)
∏

nϵN1[i]

(pn) . (1)

M [i] =
∑

nϵN1[i]

log

(
1− pn
pn

)
−
∑

nϵN0[i]

log

(
1− pn
pn

)
. (2)

Pe =
∑
iϵI+

P [i] (3)

4



If the transition probabilities are estimated they may be different that the actual p values. The
probability of the channel outputs P[i] do not change and are computed with the actual p values
as before. However, the MLBD metrics M̂ [i] use the estimated values p̂ and can therefore change
which cases Î+(M̂ [i] > 0) are perceived as errors. Consequently, the MLBD output error rate is
P̂e. The equations that incorporate estimation show the linkage between misestimation of p (DQM)
and MLBD performance degradation. Also, note that if there is a common estimation bias across
all channels, there is a tendency for it to cancel out since the MLBD metric M̂ [i] is the difference
of the log-ratio sums that contain identical bias terms as seen below.

M̂ [i] =
∑

nϵN1[i]

log

(
1− p̂n
p̂n

)
−
∑

nϵN0[i]

log

(
1− p̂n
p̂n

)
. (4)

P̂e =
∑
iϵÎ+

P [i] (5)

log

(
1− p̂npbias
p̂npbias

)
p̂npbias≪ 0−−−−−−→ −log (p̂n)− log (pbias) (6)

A second example illustrates the details of these calculations and shows the impact of even a small
estimation error in p. Table 1 compares the calculations for the ideal case p1 = 10−4 and the case
when p̂1 is misestimated as 10−5. Assuming x = 0 was transmitted, the P[i] values are calculated as
in [2] as the product of the transition probabilities (either p or (1-p)) depending on the output yn[i].
The ideal MLBD metrics are calculated using (2) and the error cases with M[i] > 0 are identified.
The corresponding P[i] values (i=3,5,6,7) are summed to obtain 1.1098 x 10−5 as the MLBD error
output probability (red values). The blue values correspond to the calculations when p̂1 = 10−5.
This causes M[4] to increase and M[3] (the error complement term) to decrease such that P[4] is
now perceived as an error resulting in 1.0000 x 10−4 as the MLBD error output probability. This
shows how a small error in p estimation can seriously degrade the MLBD detector performance.

Although these two examples show how errors in p (or DQM) estimation can adversely impact the
output error rate, it is still unclear on how to determine or bound the cost of misestimation over
the entire range of channel inputs. In order to develop a more general understanding of this rela-
tionship, detailed mathematical and simulation work was performed over a wide range of channels
with estimation errors. A surprising result was obtained and verified through both simulation and
analysis. The performance degradation of the MLBD in error exponents is bounded by the
DQM estimation error exponent. In other words, the worst-case output degradation changes
exponentially 1 to 1 with the input estimation error. This was not expected since small im-
provements in error rate at the input can result in remarkable improvements at the output. This
relationship provides the means to specify accuracy limits on DQM estimation and guarantee a
minimum level of MLBD performance and is shown in (7) below.

∆Peexp ≤ |∆p1exp| (7)
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Table 1: MLBD performance with imperfect p1 estimate. Example of how a small estimation error in p1
can cause a similar degradation in MLBD error probability.

N=3, p1 = 10−4, p2 = 10−3, p3 = 10−2 Ideal Metrics (p1 = 10−4) Estimated Metrics (p̂1 = 10−5)

i y1 y2 y3 Probability P[i]
∑
N0

∑
N1

M [i]
∑
N0

∑
N1

M̂ [i]

0 0 0 0 9.8891 x 10−1 20.7 0 -20.7 23.0 0 -23.0

1 0 0 1 9.9890 x 10−3 16.1 4.6 -11.5 18.4 4.6 -13.8

2 0 1 0 9.8990 x 10−4 13.8 6.9 -6.9 16.1 6.9 -9.2

3 0 1 1 * 9.9991 x 10−6 9.2 11.5 * 2.3 11.51 11.50 -0.01

4 1 0 0 9.8901 x 10−5 * 11.5 9.2 -2.3 11.50 11.51 0.01 *

5 1 0 1 * 9.9900 x 10−7 * 6.9 13.8 * 6.9 6.9 16.1 9.2 *

6 1 1 0 * 9.9000 x 10−8 * 4.6 16.1 * 11.5 4.6 18.4 13.8 *

7 1 1 1 * 1.0000 x 10−9 * 0 20.7 * 20.7 0 23.0 23.0 *

P[i]’s do not change due to estimation P(E | 0)=1.1098 x 10−5 P̂ (E | 0)=1.0000 x 10−4

SIMULATION RESULTS

This section presents a summary of the simulation results over a range of N, p’s, and p̂’s. For each
case, the ideal MLBD performance was computed along with the results when p1 was misestimated
over the entire range of p values. The results for N=3, 5 and 7 are shown in Figure 4 below.
The graph plots the degradation in the MLBD error exponent ∆Peexp versus the misestimation
of transition probability exponent ∆p1exp . There are many cases for which the MLBD output is
unaffected by p1 misestimation. In the case of dominant channels, even sizable estimation errors
may not change the ideal MLBD result. Other channel combinations may be degraded up to a point
and then become either dominant or ignored. The most important takeaway is that the change in
MLBD error exponent does not exceed the change in the transition probability exponent. This
supports the conclusion of the mathematical analysis in the Appendix and provides a method to
bound DQM accuracy based on the maximum allowable degradation in MLBD error.

APPLICATION TO RCC IRIG 118

Although test methods have been developed to measure the consistency and accuracy of receiver
output data quality metrics (DQM), there is not good understanding on what level of performance
is acceptable. Regardless of the specific test, it is envisioned that a key piece of test equipment
capable of capturing the DQE frames, extracting the DQM values, and measuring the estimated
BEP with the actual BER will be needed. The primary output is a DQM correlation plot that shows
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Figure 4: MLBD Degradation vs DQM Misestimation Plot
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Figure 5: DQM Correlation Plot with Bound Calculation Example
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how the estimated BEP value (DQM) compares to the actual BER for that frame. In practice, the
65,536 possible DQM values are grouped into a smaller number of bins to achieve a balance of
resolution and efficiency and as described in [3].

A section of a DQM correlation plot is presented in Figure 5 showing the mean along with its
corresponding confidence interval. Ideal DQM estimates will match the actual BER for that packet
and lie on the Ideal vs BEP line. In practice, the DQM values are estimates and are represented by
a mean and confidence interval. To show how the performance bound can be used, the DQM error
at a single point on the graph is 0.23 error exponents which translates to a worst-case degradation
factor of 1.7 times the ideal MLBD BEP. Figure 6 shows the entire DQM correlation plot with
thresholds corresponding to various levels of system loss. Finally, Figure 7 shows how tapered
thresholds can be applied which is well suited for typical test purposes.

CONCLUSIONS

This paper investigated the MLBD performance loss caused by DQM estimation error. The ob-
jective was to quantify the system cost as a function of DQM accuracy to assist in establishing
tolerance levels in DQM test procedures. Starting with the ideal MLBD performance analysis
from [2], the results were extended to include the case where the DQM transition probability val-
ues were non-ideal. Examples were presented that showed how errors in estimating DQM could
cause significant system degradation. Using mathematical analysis and simulations, a method of
calculating the misestimation cost in terms of output performance was presented.

It was shown that the performance degradation of the MLBD in error exponents is bounded
by the estimation error exponent in DQM. This is a powerful result that directly describes their
relationship. More significantly, it provides a means to quantify what level of DQM accuracy is
sufficient to meet or exceed a specified level of system performance. This performance bound was
applied to a measured DQM correlation plot to illustrate how DQM accuracy thresholds could be
added and what they imply regarding the worst-case MLBD degradation. It was also shown how
these results can be used to customize a tapered threshold based on the region of BER operation.
In summary:

• Using multiple receive channels can significantly improve the system BEP.

• The DQE/DQM RCC IRIG standard supports optimal processing for multi-channel telemetry
reception.

• Accurate DQM values are a vital ingredient in achieving good performance.

• Common DQM estimation biases between receivers tend to cancel due to the differential
nature of the metric calculations.

• Testing and verification methods are currently being developed to ensure vendor compatibil-
ity and consistent performance.

• Results from this paper can assist standards organizations in developing meaningful testing
thresholds.
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APPENDIX

In [2], the performance of the MLBD detector was analyzed and a procedure for calculating the
probability of error was presented. This appendix extends the previous analysis to look at the effect
of imperfect p estimation on the MLBD error probability. Starting with the principal equations
from the paper for probability of error and MLBD metric

P (E|0) = Pr

{∑
nϵN1

log

(
1− pn
pn

)
>
∑
nϵN0

log

(
1− pn
pn

)}
. (A.1)

M [i] =
∑

nϵN1[i]

log

(
1− pn
pn

)
−
∑

nϵN0[i]

log

(
1− pn
pn

)
. (A.2)

Let I+ be the set of indexes i for which M [i] > 0, and let I− be the set of indexes i for which
M [i] < 0. It was shown that the MLBD error probability Pe is the sum of the individual row
probabilities Pi in the table listing all possible outputs where a positive error metric Mi occurs as
shown below

Pe =
∑
iϵI+

P [i] where P [i] =
∏

nϵN0[i]

(1− pn)
∏

nϵN1[i]

(pn) . (A.3)
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It is important to note that misestimation of p only effects the MLBD metrics M[i] and does not
change the probability products P[i] formed from the actual p values. Let p̂1 be an estimate of
the actual channel transition probability p1. If the estimation error is large enough, it will change
the log-ratio sums such that the complementary error pair with the smallest difference will change
signs. This causes the probability term associated with the smallest positive MLBD metric to be
replaced with the probability term from the largest of the negative MLBD metrics resulting in an
increase of the overall MLBD error output probability.

Starting with the ideal case, assume the smallest positive MLBD metric is M [imin+] which occurs at
error pattern index i = imin+ with complementary index imax-. Misestimation of p1 will not degrade
the MLBD performance until the estimate p̂1 reaches a value that changes the sign of M [imin+]
given by

log

(
1− p̂1
p̂1

)
= log

(
1− p1
p1

)
+M [imin+] =⇒ p̂1 =

p1
p1 + (1− p1)eM [imin+]

. (A.4)

substituting for M [imin+] yields

p̂1 =
p1

p1 + (1− p1)e

(∑
nϵN1[imin+] log(

1−pn
pn

)−
∑

nϵN0[imin+]
log( 1−pn

pn
)
) (A.5)

=
p1

p1 + (1− p1)
∏

nϵN1[imin+]

(
1− pn
pn

) ∏
nϵN0[imin+]

(
pn

1− pn

) . (A.6)

Using the definition for the individual error probability P [imin+] and the fact that P [imax-] is its
complementary probability pair yields

p̂1 =
p1

p1 + (1− p1)

(
P [imin+]

P [imax-]

) . (A.7)

Turning to the MLBD output error probability Pe, it consists of the sum of the probability rows
with a positive MLBD metric. Using p̂1 instead of the actual p1 will cause P [imin+] to be removed
from the total and be replaced with P [imax-].

P̂e =
∑
iϵI+

P [i]− P [imin+] + P [imax-] = P [imax-] +
∑

iϵI+|i ̸=imin+

P [i]. (A.8)

In order to understand the effect of misestimating p has on the MLBD error output probability, the
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proportional changes will be compared. First, the ratio of estimated to actual transition probability
for p1 is

p̂1
p1

=
1

p1 + (1− p1)

(
P [imax-]

P [imin+]

) p1≪ 0−−−→
(
P [imin+]

P [imax-]

)
. (A.9)

Similarly, the ratio of MLBD probabilities can be written as

P̂e

Pe

=
P [imax-] +

∑
iϵI+|i ̸=imin+

P [i]∑
iϵI+ P [i]

=
P [imax-] +

∑
iϵI+|i ̸=imin+

P [i]

P [imin+] +
∑

iϵI+|i ̸=imin+
P [i]

(A.10)

Note that P [imax-] and P [imin+] are greater than or equal to any of the terms in the probability
summation. Therefore, the ratio of P̂e/Pe tends towards

P̂e

Pe

P [imin+]≫
∑

iϵI+|i̸=imin+
P [i]

−−−−−−−−−−−−−−−→
(
P [imax-]

P [imin+]

)
. (A.11)

These results show that the two probability ratios tend toward reciprocal values. This is a sur-
prising result considering that small improvements in the transition probability can produce large
performance improvements in MLBD error probability when using multiple channels. Define the
ratio exponents as follows

∆p1exp = log10

(
p̂1
p1

)
, ∆Peexp = log10

(
P̂e

Pe

)
. (A.12)

Finally, it can be shown that since the probability terms are positive and the ratio P̂e/Pe ≥ 1,
the change in the transition probability exponent is greater than or equal to the change in the
error probability exponent of the MLBD. Reordering the equation and applying an absolute value
provides a convenient means to establish limits on DQM error accuracy.

∆Peexp ≤ |∆p1exp| (A.13)
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