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ABSTRACT

A Data Quality Encapsulation (DQE) protocol for improving telemetry link quality has recently

been standardized and added to IRIG 106. It periodically provides a Data Quality Metric (DQM)

required for optimal Maximum Likelihood Bit Detection (MLBD) when more than one receive

source is available. The resulting diversity can provide tremendous improvements in link quality.

In order to be effective, the estimated DQM value should respond quickly and accurately to reflect

the actual Bit Error Probability (BEP).

This paper investigates the MLBD performance loss caused by DQM estimation error. The objec-

tive is to gain insight into the sensitivity of the overall bit recovery system and to use the results

to help establish tolerance levels in DQM test procedures. This relationship provides the means

to guarantee that the DQM accuracy is sufficient to meet or exceed a specified level of system

performance which is the goal of DQM testing.
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INTRODUCTION

A Data Quality Encapsulation (DQE) protocol for improving telemetry link quality has recently

been standardized and added to IRIG 106 [1]. Current DQM test methods, such as those described

in RCC IRIG 118-22 Chapter 11 – “Test Procedures for Assessing Telemetry Receiver Data Quality

Metrics”, describe detailed test procedures and identify specific data to be collected. However, it is

unclear whether the observed DQM estimation performance is acceptable or not. In other words,

how good is good enough?
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To answer this question, one needs to understand how DQM accuracy impacts the performance of

the overall bit recovery process which is ultimate measure of system performance. The approach

to quantify how good is good enough begins with examining the basic characteristics of DQM and

the optimal bit processing method described by Rice and Perrins [2]. Next, mathematical analysis

and simulations will be used to evaluate the role that DQM plays in the bit recovery process. After

this relationship is developed, a method of establishing thresholds on DQM accuracy that bounds

the worst-case system BEP degradation will be presented.

DQE/DQM BACKGROUND

When multiple receive channels are available as shown in Figure 1, the performance of the com-

munication link may be significantly improved by combining the individual sources into a single

‘best’ composite stream. There are many approaches to combining including selective and major-

ity vote. Selective combining makes its decision solely based on the strongest individual channel,

while majority vote chooses the bit with the most votes as its combined decision. For channels

where one path is clearly dominant, selective combining works well while majority vote performs

poorly. Conversely, when all paths are of similar quality, majority vote works well and selective

combining is poor. The optimal combining approach makes its bit decision by comparing the

weighted sums of channel outputs of 0 and 1 and outperforms all other methods. The weighting is

based on the log-ratio of the error transition probability for each received channel.

Figure 1: Telemetry System with Multiple Receive Channels and Best Source Selector.

Optimal combining requires both the individual channel decisions as well as the current channel

error transition probabilities. A method for transporting telemetry data along with a data quality

metric is described in the RCC 106-22 telemetry standards chapter 2 section 2.7 appendix 2-G and

is a vital ingredient for supporting optimal Best Source Selection. It allows telemetry receivers to
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generate a serial stream that includes a standardized measurement of the real-time probability of

error for a grouping of bits. The DQE process is illustrated in Figure 2 where the receiver translates

the error transition probability p into a 16-bit DQM value that accompanies N bits of telemetry

payload. The basis for the protocol was initially described in “Metrics and Test Procedures for Data

Quality Estimation in the Aeronautical Telemetry Channel” by Hill [3]. The optimal processing

technique was presented in “Maximum Likelihood Detection from Multiple Bit Sources” by Rice

and Perrins [2]. Further work on how to test this capability was described in “Some Thoughts on

Testing the Data Quality Metric” by Temple [4]. Finally, approved test methods for evaluating

DQM performance were added to IRIG 118-22 Vol. 2 [5].

Figure 2: Data Quality Encapsulation (DQE) Packet Generation

EFFECT OF DQM INPUT ACCURACY ON MLBD ERROR PERFORMANCE

Although specific tests are defined for various channel conditions (AWGN, Flat Fading, Adjacent

Channel Interference, and Multipath), there is no criteria or defined thresholds for what level of

DQM accuracy is acceptable. The issue is that it is unclear how errors in DQM estimation degrade

the system BEP performance. Understanding this relationship would allow a telemetry engineer to

specify a maximum system degradation which would then bound the DQM estimation accuracy.

For example, imagine an ideal bit recovery device (perfect DQM + MLBD) that can operate at an

output BEP of 10−8. If one is willing to accept 10−7 from a real implementation, the limits on

DQM accuracy to guarantee that level of performance could be determined.

It is important to recognize that the optimal MLBD algorithm is a fixed set of deterministic calcula-

tions. The only quantities that are estimated are the input transition probabilities p1, p2, ..., pN . It is

analogous to a card game in which the channel outputs and their probabilities are the cards that are

dealt and the MLBD algorithm is a procedure to perfectly play each hand for maximum possible

return (lowest error probability). Accurately representing each hand and using the ‘perfect play’

recipe guarantees ideal play results. However, it will be shown that misestimating p can cause a

serious loss in MLBD performance.
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What happens when the estimate p̂ differs from the actual value of p? Figure 3 shows the results of

extreme over and under estimation using a channel example presented in [2]. With N=3, p = [10−4,

10−2, 10−3] the MLBD was shown to have a BEP of 1.1098 x 10−5 which has approximately one

order of error magnitude improvement over the best individual channel (p1 = 10−4). Now imagine

that p1 was optimistically misjudged and presented as p̂1 = 10−12. The MLBD algorithm would

now always choose y1 resulting in an output error rate of 10−4 which degrades the ideal system

error performance by one order of magnitude. Similarly, an overly pessimistic estimate of p̂1 = 0.5

would always cause channel 1 to be ignored and channel 3 to be selected resulting in an output

error rate of 10−3, a loss of two orders of error magnitude.

Figure 3: Example showing effect of extreme over and under estimation of p

A detailed performance analysis of the MLBD detector was presented in [2] that describes a

procedure for calculating its output error probability. First, all possible channel output tuples

[y1, y2, ..., yN ] were formed and indexed by their binary error pattern [i]. They are separated into

two sets (N0 or N1) based on their yn value. Assuming x = 0 was transmitted, the probability of

the i-th error pattern P[i] was computed by (1). For each error pattern, the MLBD metric M[i]

is calculated by summing the log-ratio of the transition probabilities pn for each set and taking

their difference as shown in (2). The set of indexes I+ identify which M[i] > 0 indicating tuples

where an error occurs. Finally, the sum of the probabilities over this set yield the final MLBD error

probability (3).

P [i] =
∏

nϵN0[i]

(1− pn)
∏

nϵN1[i]

(pn) . (1)

M [i] =
∑

nϵN1[i]

log

(

1− pn
pn

)

−
∑

nϵN0[i]

log

(

1− pn
pn

)

. (2)

Pe =
∑

iϵI+

P [i] (3)
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If the transition probabilities are estimated they may be different that the actual p values. The

probability of the channel outputs P[i] do not change and are computed with the actual p values

as before. However, the MLBD metrics M̂ [i] use the estimated values p̂ and can therefore change

which cases Î+(M̂ [i] > 0) are perceived as errors. Consequently, the MLBD output error rate is

P̂e. The equations that incorporate estimation show the linkage between misestimation of p (DQM)

and MLBD performance degradation. Also, note that if there is a common estimation bias across

all channels, there is a tendency for it to cancel out since the MLBD metric M̂ [i] is the difference

of the log-ratio sums that contain identical bias terms as seen below.

M̂ [i] =
∑

nϵN1[i]

log

(

1− p̂n
p̂n

)

−
∑

nϵN0[i]

log

(

1− p̂n
p̂n

)

. (4)

P̂e =
∑

iϵÎ+

P [i] (5)

log

(

1− p̂npbias
p̂npbias

)

p̂npbias≪ 0
−−−−−−→ −log (p̂n)− log (pbias) (6)

A second example illustrates the details of these calculations and shows the impact of even a small

estimation error in p. Table 1 compares the calculations for the ideal case p1 = 10−4 and the case

when p̂1 is misestimated as 10−5. Assuming x = 0 was transmitted, the P[i] values are calculated as

in [2] as the product of the transition probabilities (either p or (1-p)) depending on the output yn[i].

The ideal MLBD metrics are calculated using (2) and the error cases with M[i] > 0 are identified.

The corresponding P[i] values (i=3,5,6,7) are summed to obtain 1.1098 x 10−5 as the MLBD error

output probability (red values). The blue values correspond to the calculations when p̂1 = 10−5.

This causes M[4] to increase and M[3] (the error complement term) to decrease such that P[4] is

now perceived as an error resulting in 1.0000 x 10−4 as the MLBD error output probability. This

shows how a small error in p estimation can seriously degrade the MLBD detector performance.

Although these two examples show how errors in p (or DQM) estimation can adversely impact the

output error rate, it is still unclear on how to determine or bound the cost of misestimation over

the entire range of channel inputs. In order to develop a more general understanding of this rela-

tionship, detailed mathematical and simulation work was performed over a wide range of channels

with estimation errors. A surprising result was obtained and verified through both simulation and

analysis. The performance degradation of the MLBD in error exponents is bounded by the

DQM estimation error exponent. In other words, the worst-case output degradation changes

exponentially 1 to 1 with the input estimation error. This was not expected since small im-

provements in error rate at the input can result in remarkable improvements at the output. This

relationship provides the means to specify accuracy limits on DQM estimation and guarantee a

minimum level of MLBD performance and is shown in (7) below.

∆Peexp
≤ |∆p1exp

| (7)
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Table 1: MLBD performance with imperfect p1 estimate. Example of how a small estimation error in p1

can cause a similar degradation in MLBD error probability.

N=3, p1 = 10−4, p2 = 10−3, p3 = 10−2 Ideal Metrics (p1 = 10−4) Estimated Metrics (p̂1 = 10−5)

i y1 y2 y3 Probability P[i]
∑

N0

∑

N1

M [i]
∑

N0

∑

N1

M̂ [i]

0 0 0 0 9.8891 x 10−1 20.7 0 -20.7 23.0 0 -23.0

1 0 0 1 9.9890 x 10−3 16.1 4.6 -11.5 18.4 4.6 -13.8

2 0 1 0 9.8990 x 10−4 13.8 6.9 -6.9 16.1 6.9 -9.2

3 0 1 1 * 9.9991 x 10−6 9.2 11.5 * 2.3 11.51 11.50 -0.01

4 1 0 0 9.8901 x 10−5 * 11.5 9.2 -2.3 11.50 11.51 0.01 *

5 1 0 1 * 9.9900 x 10−7 * 6.9 13.8 * 6.9 6.9 16.1 9.2 *

6 1 1 0 * 9.9000 x 10−8 * 4.6 16.1 * 11.5 4.6 18.4 13.8 *

7 1 1 1 * 1.0000 x 10−9 * 0 20.7 * 20.7 0 23.0 23.0 *

P[i]’s do not change due to estimation P(E | 0)=1.1098 x 10−5 P̂ (E | 0)=1.0000 x 10−4

SIMULATION RESULTS

This section presents a summary of the simulation results over a range of N, p’s, and p̂’s. For each

case, the ideal MLBD performance was computed along with the results when p1 was misestimated

over the entire range of p values. The results for N=3, 5 and 7 are shown in Figure 4 below.

The graph plots the degradation in the MLBD error exponent ∆Peexp
versus the misestimation

of transition probability exponent ∆p1exp
. There are many cases for which the MLBD output is

unaffected by p1 misestimation. In the case of dominant channels, even sizable estimation errors

may not change the ideal MLBD result. Other channel combinations may be degraded up to a point

and then become either dominant or ignored. The most important takeaway is that the change in

MLBD error exponent does not exceed the change in the transition probability exponent. This

supports the conclusion of the mathematical analysis in the Appendix and provides a method to

bound DQM accuracy based on the maximum allowable degradation in MLBD error.

APPLICATION TO RCC IRIG 118

Although test methods have been developed to measure the consistency and accuracy of receiver

output data quality metrics (DQM), there is not good understanding on what level of performance

is acceptable. Regardless of the specific test, it is envisioned that a key piece of test equipment

capable of capturing the DQE frames, extracting the DQM values, and measuring the estimated

BEP with the actual BER will be needed. The primary output is a DQM correlation plot that shows
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Figure 4: MLBD Degradation vs DQM Misestimation Plot
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Figure 5: DQM Correlation Plot with Bound Calculation Example
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how the estimated BEP value (DQM) compares to the actual BER for that frame. In practice, the

65,536 possible DQM values are grouped into a smaller number of bins to achieve a balance of

resolution and efficiency and as described in [3].

A section of a DQM correlation plot is presented in Figure 5 showing the mean along with its

corresponding confidence interval. Ideal DQM estimates will match the actual BER for that packet

and lie on the Ideal vs BEP line. In practice, the DQM values are estimates and are represented by

a mean and confidence interval. To show how the performance bound can be used, the DQM error

at a single point on the graph is 0.23 error exponents which translates to a worst-case degradation

factor of 1.7 times the ideal MLBD BEP. Figure 6 shows the entire DQM correlation plot with

thresholds corresponding to various levels of system loss. Finally, Figure 7 shows how tapered

thresholds can be applied which is well suited for typical test purposes.

CONCLUSIONS

This paper investigated the MLBD performance loss caused by DQM estimation error. The ob-

jective was to quantify the system cost as a function of DQM accuracy to assist in establishing

tolerance levels in DQM test procedures. Starting with the ideal MLBD performance analysis

from [2], the results were extended to include the case where the DQM transition probability val-

ues were non-ideal. Examples were presented that showed how errors in estimating DQM could

cause significant system degradation. Using mathematical analysis and simulations, a method of

calculating the misestimation cost in terms of output performance was presented.

It was shown that the performance degradation of the MLBD in error exponents is bounded

by the estimation error exponent in DQM. This is a powerful result that directly describes their

relationship. More significantly, it provides a means to quantify what level of DQM accuracy is

sufficient to meet or exceed a specified level of system performance. This performance bound was

applied to a measured DQM correlation plot to illustrate how DQM accuracy thresholds could be

added and what they imply regarding the worst-case MLBD degradation. It was also shown how

these results can be used to customize a tapered threshold based on the region of BER operation.

In summary:

• Using multiple receive channels can significantly improve the system BEP.

• The DQE/DQM RCC IRIG standard supports optimal processing for multi-channel telemetry

reception.

• Accurate DQM values are a vital ingredient in achieving good performance.

• Common DQM estimation biases between receivers tend to cancel due to the differential

nature of the metric calculations.

• Testing and verification methods are currently being developed to ensure vendor compatibil-

ity and consistent performance.

• Results from this paper can assist standards organizations in developing meaningful testing

thresholds.
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APPENDIX

In [2], the performance of the MLBD detector was analyzed and a procedure for calculating the

probability of error was presented. This appendix extends the previous analysis to look at the effect

of imperfect p estimation on the MLBD error probability. Starting with the principal equations

from the paper for probability of error and MLBD metric

P (E|0) = Pr

{

∑

nϵN1

log

(

1− pn
pn

)

>
∑

nϵN0

log

(

1− pn
pn

)

}

. (A.1)

M [i] =
∑

nϵN1[i]

log

(

1− pn
pn

)

−
∑

nϵN0[i]

log

(

1− pn
pn

)

. (A.2)

Let I+ be the set of indexes i for which M [i] > 0, and let I− be the set of indexes i for which

M [i] < 0. It was shown that the MLBD error probability Pe is the sum of the individual row

probabilities Pi in the table listing all possible outputs where a positive error metric Mi occurs as

shown below

Pe =
∑

iϵI+

P [i] where P [i] =
∏

nϵN0[i]

(1− pn)
∏

nϵN1[i]

(pn) . (A.3)
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It is important to note that misestimation of p only effects the MLBD metrics M[i] and does not

change the probability products P[i] formed from the actual p values. Let p̂1 be an estimate of

the actual channel transition probability p1. If the estimation error is large enough, it will change

the log-ratio sums such that the complementary error pair with the smallest difference will change

signs. This causes the probability term associated with the smallest positive MLBD metric to be

replaced with the probability term from the largest of the negative MLBD metrics resulting in an

increase of the overall MLBD error output probability.

Starting with the ideal case, assume the smallest positive MLBD metric is M [imin+] which occurs at

error pattern index i = imin+ with complementary index imax-. Misestimation of p1 will not degrade

the MLBD performance until the estimate p̂1 reaches a value that changes the sign of M [imin+]
given by

log

(

1− p̂1
p̂1

)

= log

(

1− p1
p1

)

+M [imin+] =⇒ p̂1 =
p1

p1 + (1− p1)eM [imin+]
. (A.4)

substituting for M [imin+] yields

p̂1 =
p1

p1 + (1− p1)e

(

∑

nϵN1[imin+] log(
1−pn
pn

)−
∑

nϵN0[imin+]
log( 1−pn

pn
)
) (A.5)

=
p1

p1 + (1− p1)
∏

nϵN1[imin+]

(

1− pn
pn

)

∏

nϵN0[imin+]

(

pn
1− pn

) . (A.6)

Using the definition for the individual error probability P [imin+] and the fact that P [imax-] is its

complementary probability pair yields

p̂1 =
p1

p1 + (1− p1)

(

P [imin+]

P [imax-]

) . (A.7)

Turning to the MLBD output error probability Pe, it consists of the sum of the probability rows

with a positive MLBD metric. Using p̂1 instead of the actual p1 will cause P [imin+] to be removed

from the total and be replaced with P [imax-].

P̂e =
∑

iϵI+

P [i]− P [imin+] + P [imax-] = P [imax-] +
∑

iϵI+|i ̸=imin+

P [i]. (A.8)

In order to understand the effect of misestimating p has on the MLBD error output probability, the
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proportional changes will be compared. First, the ratio of estimated to actual transition probability

for p1 is

p̂1
p1

=
1

p1 + (1− p1)

(

P [imax-]

P [imin+]

)

p1≪ 0
−−−→

(

P [imin+]

P [imax-]

)

. (A.9)

Similarly, the ratio of MLBD probabilities can be written as

P̂e

Pe

=
P [imax-] +

∑

iϵI+|i ̸=imin+
P [i]

∑

iϵI+
P [i]

=
P [imax-] +

∑

iϵI+|i ̸=imin+
P [i]

P [imin+] +
∑

iϵI+|i ̸=imin+
P [i]

(A.10)

Note that P [imax-] and P [imin+] are greater than or equal to any of the terms in the probability

summation. Therefore, the ratio of P̂e/Pe tends towards

P̂e

Pe

P [imin+]≫
∑

iϵI+|i ̸=imin+
P [i]

−−−−−−−−−−−−−−−→

(

P [imax-]

P [imin+]

)

. (A.11)

These results show that the two probability ratios tend toward reciprocal values. This is a sur-

prising result considering that small improvements in the transition probability can produce large

performance improvements in MLBD error probability when using multiple channels. Define the

ratio exponents as follows

∆p1exp
= log10

(

p̂1
p1

)

, ∆Peexp
= log10

(

P̂e

Pe

)

. (A.12)

Finally, it can be shown that since the probability terms are positive and the ratio P̂e/Pe ≥ 1,

the change in the transition probability exponent is greater than or equal to the change in the

error probability exponent of the MLBD. Reordering the equation and applying an absolute value

provides a convenient means to establish limits on DQM error accuracy.

∆Peexp
≤ |∆p1exp

| (A.13)
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